Abstract
Feature selection is a well-known preprocessing technique in machine learning, which can remove irrelevant features to improve the generalization capability of a classifier and reduce training and inference time. However, feature selection is time-consuming, particularly for the applications those have thousands of features, such as image retrieval, text mining and microarray data analysis. It is crucial to accelerate the feature selection process. We propose a quantum version of wrapper-based feature selection, which converts a classical feature selection to its quantum counterpart. It is valuable for machine learning on quantum computer. In this paper, we focus on two popular kinds of feature selection methods, i.e., wrapper-based forward selection and backward elimination. The proposed feature selection algorithm can quadratically accelerate the classical one.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ordonez, V., Han, X., Kuznetsova, P., Kulkarni, G., Mitchell, M., Yamaguchi, K., Stratos, K., Goyal, A., Dodge, J., Mensch, A., et al.: Large scale retrieval and generation of image descriptions. Int. J. Comput. Vis. 119, 46–59 (2016)
Li, P., Shrivastava, A., Moore, J.L., König, A.C.: Hashing algorithms for large-scale learning. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp. 2672–2680. Curran Associates, Inc., Granada, Spain (2011)
Lee, C.P., Leu, Y.: A novel hybrid feature selection method for microarray data analysis. Appl. Soft Comput. 11, 208–213 (2011)
Blum, B., Baker, D., Jordan, M.I., Bradley, P., Das, R., Kim, D.E.: Feature selection methods for improving protein structure prediction with rosetta. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Processing Systems, pp. 137–144. Curran Associates, Inc., Vancouver, British Columbia, Canada (2008)
Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1, 131–156 (1997)
Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23, 2507–2517 (2007)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100(23), 230502 (2008)
Wei, C.Y., Cai, X.Q., Liu, B., Wang, T., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)
Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56, 172–185 (2015)
Li, K., Qiu, D., Li, L., Zheng, S., Rong, Z.: Application of distributed semi-quantum computing model in phase estimation. Inf. Process. Lett. 120, 23–29 (2017)
Yu, C.H., Gao, F., Wang, Q.L., Wen, Q.Y.: Quantum algorithm for association rules mining. Phys. Rev. A 94, 042311 (2016)
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195 (2017)
Ruan, Y., Xue, X., Liu, H., Tan, J., Li, X.: Quantum algorithm for k-nearest neighbors classification based on the metric of hamming distance. Int. J. Theor. Phys. 56, 3496–3507 (2017)
Ezhov, A.A., Ventura, D.: Quantum neural networks. Future Directions Intell. Syst. Inf. Sci. 45, 213–235 (2000)
Cheng, S., Chen, J., Wang, L.: Quantum entanglement: from quantum states of matter to deep learning. Physics 46(7), 416–423 (2017)
Aimeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90, 261–287 (2013)
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)
Weinstein, M., Meirer, F., Hume, A., Sciau, P., Shaked, G., Hofstetter, R., Persi, E., Mehta, A., Horn, D.: Analyzing big data with dynamic quantum clustering. arXiv:1310.2700 (2013)
Dong, D., Chen, C., Chen, Z.: Quantum reinforcement learning. IEEE Trans. Syst. Man Cybern. B 38, 1207–1220 (2008)
Duan, B., Yuan, J., Liu, Y., Li, D.: Quantum algorithm for support matrix machines. Phys. Rev. A 96, 032301 (2017)
Chen, C., Dong, D., Chen, Z.: Quantum computation for action selection using reinforcement learning. Int. J. Quantum Inf. 4, 1071–1083 (2006)
Chatterjee, R., Yu, T.: Generalized coherent states, reproducing kernels, and quantum support vector machines. Quantum Inf. Comput. 17, 1292 (2017)
Adachi, S.H., Henderson, M.P.: Application of quantum annealing to training of deep neural networks. arXiv:1510.06356 (2015)
Wiebe, N., Kapoor, A., Svore, K.M.: Quantum deep learning. arXiv:1412.3489 (2014)
Pan, J., Cao, Y., Yao, X., Li, Z., Ju, C., Chen, H., Peng, X., Kais, S., Du, J.: Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A 89, 022313 (2014)
Cai, X.D., Wu, D., Su, Z.E., Chen, M.C., Wang, X.L., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 114, 110504 (2015)
Chen, J., Wang, L., Charbon, E.: A quantum-implementable neural network model. Quantum Inf. Process. 16, 245 (2017)
Lu, S., Braunstein, S.L.: Quantum decision tree classifier. Quantum Inf. Process. 13, 757–770 (2014)
Zhang, G., Hu, L., Jin, W.: Resemblance coefficient and a quantum genetic algorithm for feature selection. In: International Conference on Discovery Science, pp. 155–168. Springer (2004)
Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)
Li, Z., Liu, X., Xu, N., Du, J.: Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114(14), 140504 (2015)
Liu, Y., Zhang, S.: Fast quantum algorithms for least squares regression and statistic leverage scores. In: International Workshop on Frontiers in Algorithmics, pp. 204–216. Springer (2015)
Doquire, G., Verleysen, M.: Mutual information-based feature selection for multilabel classification. Neurocomputing 122, 148–155 (2013)
Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)
Maldonado, S., Weber, R.: A wrapper method for feature selection using support vector machines. Inf. Sci. 179, 2208–2217 (2009)
Wang, A., An, N., Chen, G., Li, L., Alterovitz, G.: Accelerating wrapper-based feature selection with k-nearest-neighbor. Knowl. Based Syst. 83, 81–91 (2015)
Apolloni, J., Leguizamón, G., Alba, E.: Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments. Appl. Soft Comput. 38, 922–932 (2016)
Mao, K.Z.: Orthogonal forward selection and backward elimination algorithms for feature subset selection. IEEE Trans. Syst. Man Cybern. B (Cybernetics) 34, 629–634 (2004)
Hu, Y., Lan, W., Miller, D.: Handling high-dimension (high-feature) microrna data. In: Bioinformatics in MicroRNA Research. Methods in Molecular Biology, vol. 1617, pp. 179–186 (2017)
Durr, C., Hoyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014 (1996)
Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014)
Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)
Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. arXiv:quant-ph/9605034 (1996)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant Nos. 61472452, 61772565, 61602116, 61502179), the Natural Science Foundation of Guangdong Province of China (Grant No. 2017A030313378), the Science and Technology Program of Guangzhou City of China (No. 201707010194), the Fundamental Research Funds for the Central Universities (No. 17lgzd29) and the Research Foundation for Talented Scholars of Foshan University (No. gg040996).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
He, Z., Li, L., Huang, Z. et al. Quantum-enhanced feature selection with forward selection and backward elimination. Quantum Inf Process 17, 154 (2018). https://doi.org/10.1007/s11128-018-1924-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1924-8