Skip to main content

Advertisement

Log in

Enhancing the absorption and energy transfer process via quantum entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum network model is widely used to describe the dynamics of excitation energy transfer in photosynthesis complexes. Different from the previous schemes, we explore a specific network model, which includes both light-harvesting and energy transfer process. Here, we define a rescaled measure to manifest the energy transfer efficiency from external driving to the sink, and the external driving fields are used to simulate the energy absorption process. To study the role of initial state in the light-harvesting and energy transfer process, we assume the initial state of the donors to be two-qubit and three-qubit entangled states, respectively. In the two-qubit initial state case, we find that the initial entanglement between the donors can help to improve the absorption and energy transfer process for both the near-resonant and large-detuning cases. For the case of three-qubit initial state, we can see that the transfer efficiency will reach a larger value faster in the tripartite entanglement case compared to the bipartite entanglement case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blankenship, R.E.: Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford (2002)

    Book  Google Scholar 

  2. Sauer, K.: Photosynthesis-the light reactions. Annu. Rev. Phys. Chem. 30, 155–178 (1979)

    Article  ADS  Google Scholar 

  3. van Grondelle, R., Novoderezhkin, V.I.: Energy transfer in photosynthesis: experimental insights and quantitative models. Phys. Chem. Chem. Phys. 8, 793–807 (2006)

    Article  Google Scholar 

  4. Scholes, G.D., Fleming, G.R., Olaya-Castro, A., van Grondelle, R.: Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011)

    Article  Google Scholar 

  5. Scully, M.O.: Using quantum coherence to reduce radiative recombination and increase efficiency. Phys. Rev. Lett 104(1–4), 207701 (2010)

    Article  ADS  Google Scholar 

  6. Scully, M.O., Chapin, K.R., Dorfman, K.E., Kim, M.B., Svidzinsky, A.: Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl. Acad. Sci. 108, 15097–15100 (2011)

    Article  ADS  Google Scholar 

  7. Creatore, C., Parker, M.A., Emmott, S., Chin, A.W.: Efficient biologically inspired photocell enhanced by delocalized quantum states. Phys. Rev. Lett. 111(1–5), 253601 (2013)

    Article  ADS  Google Scholar 

  8. Zhang, Y., Oh, S., Alharbi, F.H., Engel, G., Kais, S.: Delocalized quantum states enhance photocell efficiency. Phys. Chem. Chem. Phys. 17, 5743–5750 (2014)

    Article  Google Scholar 

  9. Ajisaka, S., Zunkovic, B., Dubi, Y.: The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium. Sci. Rep. 5(1–6), 8321 (2015)

    Google Scholar 

  10. Kuhn, O., Sundstrom, V., Pullerits, T.: Fluorescence depolarization dynamics in the B850 complex of purple bacteria. Chem. Phys. 275, 15–30 (2002)

    Article  Google Scholar 

  11. Engel, G.S., et al.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007)

    Article  ADS  Google Scholar 

  12. Panitchayangkoon, G., et al.: Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. 107, 12766–12770 (2010)

    Article  ADS  Google Scholar 

  13. Scholes, G.D.: Quantum-coherent electronic energy transfer: did nature think of it first? J. Phys. Chem. Lett. 1, 2–8 (2010)

    Article  Google Scholar 

  14. Chachisvilis, M., Kuhn, O., Pullerits, T., Sundstrom, V.: Excitons in photosynthetic purple bacteria: wavelike motion or incoherent hopping. J. Phys. Chem B 101, 7275–7283 (1997)

    Article  Google Scholar 

  15. Harel, E., Engel, G.S.: Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). Proc. Natl. Acad. Sci. 109, 706–711 (2012)

    Article  ADS  Google Scholar 

  16. Nalbach, P., Braun, D., Thorwart, M.: Exciton transfer dynamics and quantumness of energy transfer in the Fenna–Matthews–Olson complex. Phys. Rev. E 84(1–6), 041926 (2011)

    Article  ADS  Google Scholar 

  17. Ai, B., Zhu, S.-L.: Complex quantum network model of energy transfer in photosynthetic complexes. Phys. Rev. E 86(1–8), 061917 (2012)

    Article  ADS  Google Scholar 

  18. Yi, X.X., Zhang, X.Y., Oh, C.H.: Effect of complex inter-site couplings on the excitation energy transfer in the FMO complex. Eur. Phys. J. D 67(1–7), 172 (2013)

    Article  ADS  Google Scholar 

  19. Olaya-Castro, A., Lee, C.F., Olsen, F.F., Johnson, N.F.: Efficiency of energy transfer in a light-harvesting system under quantum coherence. Phys. Rev. B 78(1–7), 085115 (2008)

    Article  ADS  Google Scholar 

  20. Kassal, I., Zhou, J.Y., Keshari, S.R.: Does coherence enhance transport in photosynthesis? J. Phys. Chem. Lett. 4, 362–367 (2013)

    Article  Google Scholar 

  21. Yang, S., Xu, D.Z., Song, Z., Sun, C.P.: Dimerization-assisted energy transport in light-harvesting complexes. J. Chem. Phys. 132(1–10), 234501 (2010)

    Article  ADS  Google Scholar 

  22. Liang, X.-T.: Excitation energy transfer: study with non-Markovian dynamics. Phys. Rev. E 82(1–5), 051918 (2010)

    Article  ADS  Google Scholar 

  23. Ishizakia, A., Fleming, G.R.: Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl. Acad. Sci. USA 106, 17255–17260 (2009)

    Article  ADS  Google Scholar 

  24. Ghosh, P.K., Smirnov, A.Y., Nori, F.: Quantum effects in energy and charge transfer in an artificial photosynthetic complex. J. Chem. Phys. 134(1–13), 244103 (2011)

    Article  ADS  Google Scholar 

  25. Tao, M.-J., Ai, Q., Deng, F.-G., Cheng, Y.-C.: Proposal for probing energy transfer pathway by single-molecule pump-dump experiment. Sci. Rep. 6(1–10), 27535 (2016)

    Article  ADS  Google Scholar 

  26. Ai, Q., Yen, T.-C., Jin, B.-Y., Cheng, Y.-C.: Clustered geometries exploiting quantum coherence effects for efficient energy transfer in light harvesting. J. Phys. Chem. Lett. 4, 2577–2584 (2013)

    Article  Google Scholar 

  27. Irish, E.K., GOmez-Bombarelli, R., Lovett, B.W.: Vibration-assisted resonance in photosynthetic excitation-energy transfer. Phys. Rev. A 90(1–10), 012510 (2014)

    Article  ADS  Google Scholar 

  28. del Rey, M., Chin, A.W., Huelga, S.F., Plenio, M.B.: Exploiting structured environments for efficient energy transfer: the phonon antenna mechanism. J. Phys. Chem. Lett. 4, 903–907 (2013)

    Article  Google Scholar 

  29. Chen, G.-Y., Lambert, N., Li, C.-M., Chen, Y.-N., Nori, F.: Rerouting excitation transfers in the Fenna–Matthews–Olson complex. Phys. Rev. E 88(1–6), 032120 (2013)

    Article  ADS  Google Scholar 

  30. Liao, J.-Q., Huang, J.-F., Kuang, L.-M., Sun, C.P.: Coherent excitation-energy transfer and quantum entanglement in a dimer. Phys. Rev. A 82(1–12), 052109 (2010)

    Article  ADS  Google Scholar 

  31. Li, H., Zhang, P., Liu, Y., Li, F., Zhu, S.: Control excitation and coherent transfer in a dimer. Phys. Rev. A 87(1–7), 053831 (2013)

    Article  ADS  Google Scholar 

  32. Asadian, A., et al.: Motional effects on the efficiency of excitation transfer. New. J. Phys. 12(1–23), 075019 (2010)

    Article  ADS  Google Scholar 

  33. Qin, M., Shen, H.Z., Zhao, X.L., Yi, X.X.: Dynamics and quantumness of excitation energy transfer through a complex quantum network. Phys. Rev. E 90(1–13), 042140 (2014)

    Article  ADS  Google Scholar 

  34. Marais, A., Sinayskiy, I., Petruccione, F., van Grondelle, R.: A quantum protective mechanism in photosynthesis. Sci. Rep. 5(1–8), 8720 (2015)

    Article  Google Scholar 

  35. Dong, H., Li, S.-W., Yi, Z., Agarwal, G.S., Scully, M.O.: Photon-blockade induced photon anti-bunching in photosynthetic antennas with cyclic structures. arXiv:1608.04364

  36. Plenio, M.B., Huelga, S.F.: Dephasing assisted transport: quantum networks and biomolecules. New. J. Phys. 10(1–14), 113019 (2008)

    Article  ADS  Google Scholar 

  37. Mohseni, M., Rebentrost, P., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum walks in energy transfer of photosynthetic complexes. J. Chem. Phys. 129(1–8), 174106 (2008)

    Article  ADS  Google Scholar 

  38. Hoyer, S., Sarovar, M., Whaley, K.B.: Limits of quantum speedup in photosynthetic light harvesting. New. J. Phys. 12(1–9), 065041 (2010)

    Article  ADS  Google Scholar 

  39. Caruso, F., Chin, A.W., Datta, A., Huelga, S.F., Plenio, M.B.: Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport. J. Chem. Phys. 131(1–16), 105106 (2009)

    Article  ADS  Google Scholar 

  40. Chin, A.W., Datta, A., Caruso, F., Huelga, S.F., Plenio, M.B.: Noise-assisted energy transfer in quantum networks and light-harvesting complexes. New J. Phys. 12(1–16), 065002 (2010)

    Article  ADS  Google Scholar 

  41. Cheng, Y.C., Silbey, R.J.: Coherence in the B800 ring of purple bacteria LH2. Phys. Rev. Lett. 96(1–4), 028103 (2006)

    Article  ADS  Google Scholar 

  42. Jang, S., Cheng, Y.C., Reichman, D.R., Eaves, J.D.: Theory of coherent resonance energy transfer. J. Chem. Phys. 129(1–4), 101104 (2008)

    Article  ADS  Google Scholar 

  43. Jang, S.: Theory of multichromophoric coherent resonance energy transfer: a polaronic quantum master equation approach. J. Chem. Phys 135(1–9), 034105 (2011)

    Article  ADS  Google Scholar 

  44. Kolli, A., Nazir, A., Olaya-Castro, A.: Electronic excitation dynamics in multichromophoric systems described via a polaron-representation master equation. J. Chem. Phys. 135(1–13), 154112 (2011)

    Article  ADS  Google Scholar 

  45. Cao, J.S.: A phase-space study of Bloch–Redfield theory. J. Chem. Phys. 107, 3204–3209 (1997)

    Article  ADS  Google Scholar 

  46. Wu, J.L., Liu, F., Shen, Y., Cao, J.S., Silbey, R.J.: Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy, and spatial-temporal correlations. New. J. Phys. 12(1–17), 105012 (2010)

    Article  ADS  Google Scholar 

  47. Ye, J., Sun, K., Zhao, Y., Yu, Y., Lee, C.K., Cao, J.S.: Excitonic energy transfer in light-harvesting complexes in purple bacteria. J. Chem. Phys. 136(1–17), 245104 (2012)

    Article  ADS  Google Scholar 

  48. Piilo, J., Maniscalco, S., Harkonen, K., Suominen, K.A.: Non-Markovian quantum jumps. Phys. Rev. Lett. 100(1–4), 180402 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Piilo, J., Harkonen, K., Maniscalco, S., Suominen, K.A.: Open system dynamics with non-Markovian quantum jumps. Phys. Rev. A 79(1–17), 062112 (2009)

    Article  ADS  MATH  Google Scholar 

  50. Rebentrost, P., Chakraborty, R., Aspuru-Guzik, A.: Non-Markovian quantum jumps in excitonic energy transfer. J. Chem. Phys. 131(1–9), 184102 (2009)

    Article  ADS  Google Scholar 

  51. Prior, J., Chin, A.W., Huelga, S.F.: Efficient Simulation of strong system-environment interactions. Phys. Rev. Lett. 105(1–4), 050404 (2010)

    Article  ADS  Google Scholar 

  52. Tanimura, Y.: Stochastic Liouville, Langevin, Fokker–Planck, and Master Equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn. 75(1–39), 082001 (2006)

    Article  ADS  Google Scholar 

  53. Ishizaki, A., Fleming, G.R.: Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys. 130(1–10), 234111 (2009)

    Article  ADS  Google Scholar 

  54. Mancal, T., Valkunas, L.: Exciton dynamics in photosynthetic complexes: excitation by coherent and incoherent light. New. J. Phys. 12(1–19), 065044 (2010)

    Article  ADS  Google Scholar 

  55. Chenu, A., Maly, P., Mancal, T.: Dynamic coherence in excitonic molecular complexes under various excitation conditions. Chem. Phys. 439, 100–110 (2014)

    Article  Google Scholar 

  56. Dodin, A., Tscherbul, T.V., Brumer, P.: Quantum dynamics of incoherently driven V-type systems: Analytic solutions beyond the secular approximation. J. Chem. Phys. 144(1–13), 244108 (2016)

    Article  ADS  Google Scholar 

  57. Amerongen, H.V., Valkunas, L., Grondelle, R.V.: Photosynthetic Excitons. World Scientific, Singapore (2000)

    Book  Google Scholar 

  58. Fassioli, F., Olaya-Castro, A.: Distribution of entanglement in light-harvesting complexes and their quantum efficiency. New. J. Phys. 12(1–15), 085006 (2010)

    Article  ADS  Google Scholar 

  59. Caruso, F., Montangero, S., Calarco, T., Huelga, S.F., Plenio, M.B.: Coherent optimal control of photosynthetic molecules. Phys. Rev. A 85(1–12), 042331 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF-China under Grant No. 11374085, the Key Program of the Education Department of Anhui Province under Grant Nos. KJ2017A922, KJ2016A583, the Anhui Provincial Natural Science Foundation under Grant Nos.1708085MA12, 1708085MA10, the discipline top-notch talents Foundation of Anhui Provincial Universities under Grant Nos. gxbjZD2017024, gxbjZD2016078, the 136 Foundation of Hefei Normal University and the China Scholarships Council under Grant No. 201606500002.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Song or Jian Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, XL., Song, W., Zhou, J. et al. Enhancing the absorption and energy transfer process via quantum entanglement. Quantum Inf Process 17, 158 (2018). https://doi.org/10.1007/s11128-018-1926-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1926-6

Keywords

Navigation