Skip to main content
Log in

Unambiguous discrimination between linearly dependent equidistant states with multiple copies

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Linearly independent quantum states can be unambiguously discriminated, but linearly dependent ones cannot. For linearly dependent quantum states, however, if C copies of the single states are available, then they may form linearly independent states, and can be unambiguously discriminated. We consider unambiguous discrimination among N = D + 1 linearly dependent states given that C copies are available and that the single copies span a D-dimensional space with equal inner products. The maximum unambiguous discrimination probability is derived for all C with equal a priori probabilities. For this classification of the linearly dependent equidistant states, our result shows that if C is even then adding a further copy fails to increase the maximum discrimination probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chefles, A.: Quantum state discrimination. Contemp. Phys. 4, 401–424 (2000)

    Article  ADS  MATH  Google Scholar 

  2. Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photon. 1, 238–278 (2009)

    Article  Google Scholar 

  3. Bergou, J.A.: Discrimination of quantum states. J. Mod. Opt. 57, 160–180 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  5. Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257–259 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  6. Dieks, D.: Overlap and distinguish ability of quantum states. Phys. Lett. A 126, 303–306 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. Peres, P.: How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  8. Jeager, G., Shimony, A.: Optimal distinction between non-orthogonal quantum states. Phys. Lett. A 197, 83–87 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Assalini, A., Cariolaro, G., Pierobon, G.: Efficient optimal minimum error discrimination of symmetric quantum states. Phys. Rev. A 81, 012315 (2010)

    Article  ADS  Google Scholar 

  10. Bae, J., Hwang, W.Y.: Minimum-error discrimination of qubit states: methods, solutions, and properties. Phys. Rev. A 87, 012334 (2013)

    Article  ADS  Google Scholar 

  11. Mazhari Khiavi, Y., Akbari Kourbolagh, Y.: Minimum-error discrimination among three pure linearly independent symmetric qutrit states. Quantum Inf. Process. 12, 1255 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Jafarizadeh, M.A., Mazhari Khiavi, Y., Akbari Kourbolagh, Y.: Minimum-error discrimination between two sets of similarity-transformed quantum states. Quantum Inf. Process. 12, 2385 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Nakahira, K., Usuda, T.S., Kato, K.: Finding optimal measurements with inconclusive results using the problem of minimum error discrimination. Phys. Rev. A 91, 022331 (2015)

    Article  ADS  Google Scholar 

  14. Bergou, J.A., Futschik, U., Feldman, E.: Optimal unambiguous discrimination of pure quantum states. Phys. Rev. Lett. 108, 250502 (2012)

    Article  ADS  Google Scholar 

  15. Zhang, W.H., Yu, L.B., Cao, Z.L., Ye, L.: Optimal unambiguous discrimination of pure qudits. Quantum Inf. Process. 13, 503 (2014)

    Article  ADS  MATH  Google Scholar 

  16. Ha, D., Kwon, Y.: Analysis of optimal unambiguous discrimination of three pure quantum states. Phys. Rev. A 91, 062312 (2015)

    Article  ADS  Google Scholar 

  17. Fiurášek, J., Ježek, M.: Optimal discrimination of mixed quantum states involving inconclusive results. Phys. Rev. A 67, 012321 (2003)

    Article  ADS  Google Scholar 

  18. Eldar, Y.C.: Mixed-quantum-state detection with inconclusive results. Phys. Rev. A 67, 042309 (2003)

    Article  ADS  Google Scholar 

  19. Ha, D., Kwon, Y.: An optimal discrimination of two mixed qubit states with a fixed rate of inconclusive results. Quantum Inf. Process. 16, 273 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Agnew, M., Bolduc, E., Resch, K.J., Franke-Arnold, S., Leach, J.: Discriminating single-photon states unambiguously in high dimensions. Phys. Rev. Lett. 113, 020501 (2014)

    Article  ADS  Google Scholar 

  21. Solís-Prosser, M.A., González, P., Fuenzalida, J.: Experimental multiparty sequential state discrimination. Phys. Rev. A 94, 042309 (2016)

    Article  ADS  Google Scholar 

  22. Solís-Prosser, M.A., Fernandes, M.F., Jiménez, O.: Experimental minimum-error quantum-state discrimination in high dimensions. Phys. Rev. Lett. 118, 100501 (2017)

    Article  ADS  Google Scholar 

  23. Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Chefles, A.: Unambiguous discrimination between linearly dependent states with multiple copies. Phys. Rev. A 64, 062305 (2001)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of the Education Department of Anhui Province of China under Grants Nos. KJ2016A672 and KJ2015A268.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hai Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WH., Ren, G. Unambiguous discrimination between linearly dependent equidistant states with multiple copies. Quantum Inf Process 17, 155 (2018). https://doi.org/10.1007/s11128-018-1929-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1929-3

Keywords

Navigation