Skip to main content
Log in

Finite-data-size study on practical universal blind quantum computation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The universal blind quantum computation with weak coherent pulses protocol is a practical scheme to allow a client to delegate a computation to a remote server while the computation hidden. However, in the practical protocol, a finite data size will influence the preparation efficiency in the remote blind qubit state preparation (RBSP). In this paper, a modified RBSP protocol with two decoy states is studied in the finite data size. The issue of its statistical fluctuations is analyzed thoroughly. The theoretical analysis and simulation results show that two-decoy-state case with statistical fluctuation is closer to the asymptotic case than the one-decoy-state case with statistical fluctuation. Particularly, the two-decoy-state protocol can achieve a longer communication distance than the one-decoy-state case in this statistical fluctuation situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Lond. Ser. A Math. Phys. Sci. 439(1907), 553–558 (1992)

  3. Grover, L. K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)

  4. Shor, P. W.: Fault-tolerant quantum computation. In: Foundations of Computer Science, Proceedings., 37th Annual Symposium on. IEEE, Conference Proceedings, pp. 56–65 (1996)

  5. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999). https://doi.org/10.1137/S0036144598347011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Childs, A.M.: Secure assisted quantum computation. Quantum Inf. Comput. 5(6), 456–466 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Arrighi, P., Salvail, L.: Blind quantum computation. Int. J. Quantum Inf. 4(05), 883–898 (2006)

    Article  MATH  Google Scholar 

  8. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Foundations of Computer Science. FOCS’09. 50th Annual IEEE Symposium on. IEEE, Conference Proceedings, pp. 517–526 (2009)

  9. Reichardt, B.W., Unger, F., Vazirani, U.: Classical command of quantum systems. Nature 496(7446), 456–460 (2013)

    Article  ADS  Google Scholar 

  10. Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In: Advances in Cryptology-CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18–22, Proceedings, Part II, pp. 344–360. Springer (2013)

  11. Morimae, T.: Continuous-variable blind quantum computation. Phys. Rev. Lett. 109(23), 230502 (2012)

    Article  ADS  Google Scholar 

  12. Sueki, T., Koshiba, T., Morimae, T.: Ancilla-driven universal blind quantum computation. Phys. Rev. A 87(6), 060301 (2013)

    Article  ADS  Google Scholar 

  13. Morimae, T., Fujii, K.: Blind quantum computation protocol in which alice only makes measurements. Phys. Rev. A 87(5), 050301 (2013)

    Article  ADS  Google Scholar 

  14. Li, Q., Chan, W.H., Wu, C., Wen, Z.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89(4), 040302 (2014)

    Article  ADS  Google Scholar 

  15. Morimae, T., Dunjko, V., Kashefi, E.: Ground state blind quantum computation on AKLT state. Quantum Inf. Comput. 15, 200–234 (2015)

    MathSciNet  Google Scholar 

  16. Morimae, T., Fujii, K.: Blind topological measurement-based quantum computation. Nat. Commun. 3, 1036 (2012)

    Article  ADS  Google Scholar 

  17. Chien, C.-H., Van Meter, R., Kuo, S.-Y.: Fault-tolerant operations for universal blind quantum computation. ACM J. Emerg. Technol. Comput. Syst. 12, 9 (2015)

    Article  Google Scholar 

  18. Takeuchi, Y., Fujii, K., Ikuta, R., Yamamoto, T., Imoto, N.: Blind quantum computation over a collective-noise channel. Phys. Rev. A 93(5), 052307 (2016). pRA. [Online]. https://link.aps.org/doi/10.1103/PhysRevA.93.052307

  19. Sheng, Y.-B., Zhou, L.: Blind quantum computation with noise environment. arXiv preprint arXiv:1609.08902 (2016)

  20. Giovannetti, V., Maccone, L., Morimae, T., Rudolph, T.G.: Efficient universal blind quantum computation. Phys. Rev. Lett. 111(23), 230501 (2013)

    Article  ADS  Google Scholar 

  21. Mantri, A., Prez-Delgado, C.A., Fitzsimons, J.F.: Optimal blind quantum computation. Phys. Rev. Lett. 111(23), 230502 (2013)

    Article  ADS  Google Scholar 

  22. Prez-Delgado, C.A., Fitzsimons, J.F.: Iterated gate teleportation and blind quantum computation. Phys. Rev. Lett. 114(22), 220502 (2015)

    Article  ADS  Google Scholar 

  23. Dunjko, V., Kashefi, E., Leverrier, A.: Blind quantum computing with weak coherent pulses. Phys. Rev. Lett. 108(20), 200502 (2012)

    Article  ADS  Google Scholar 

  24. Xu, K., Lo, H.-K.: Blind quantum computing with decoy states. arXiv preprint arXiv:1508.07910 (2015)

  25. Zhao, Q., Li, Q.: Blind Quantum Computation with Two Decoy States. Springer International Publishing, Berlin (2017)

    Book  Google Scholar 

  26. Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Demonstration of blind quantum computing. Science 335(6066), 303–308 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Barz, S., Fitzsimons, J. F., Kashefi, E., Walther, P.: Experimental verification of quantum computations. arXiv preprint arXiv:1309.0005 (2013)

  28. Fisher, K., Broadbent, A., Shalm, L., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K.: Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014)

    Article  ADS  Google Scholar 

  29. Dunjko, V., Kashefi, E.: Blind quantum computing with two almost identical states. arXiv preprint arXiv:1604.01586 (2016)

  30. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

    Article  ADS  Google Scholar 

  31. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2), 022312 (2003)

    Article  ADS  Google Scholar 

  32. Jozsa, R.: ‘An introduction to measurement based quantum computation. NATO Sci. Ser. III Comput. Syst. Sci. Quantum Inf. Process. Theory Exp. 199, 137–158 (2006)

    Google Scholar 

  33. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)

    Article  ADS  Google Scholar 

  34. Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)

    Article  ADS  Google Scholar 

  35. Feller, W.: An Introduction to Probability Theory and Its Applications: Volume I, vol. 1, 3rd edn. Wiley, New York (1973)

    Google Scholar 

  36. Dunbar, S. R.: The de moivre-laplace central limit theorem. Department of Mathematics, University of Nebraska, Lincoln/NE (2011) [Online]. https://www.math.unl.edu/~sdunbar1

  37. Dunjko, V., Fitzsimons, J. F., Portmann, C., Renner, R.: Composable security of delegated quantum computation. In: Advances in Cryptology—ASIACRYPT 2014: 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7–11, Proceedings, Part II, pp. 406–425. Springer (2014)

  38. Maurer, U., Renner, R.: Abstract cryptography. In: The Second Symposium in Innovations in Computer Science, ICS 2011, pp. 1–21. Tsinghua University Press (2011)

  39. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Number: 61471141, 61361166006), Key Technology Program of Shenzhen, China, (Grant Number: JSGG20160427185010977) and Basic Research Project of Shenzhen, China (Grant Number: JCYJ20150513151706561).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Li.

Appendix

Appendix

1.1 A. Two-decoy-states RBSP protocol

Protocol The modified RBSP protocol with two decoy states

(1). Client’s preparation

   (1.1) The client generates N weak coherent pulses which contain signal states and two decoy states with mean photon number \(\mu ,{v_1},{v_2}\), respectively. A random polarization can be described as \(\sigma _l\)(for \(l=1,\ldots ,N\)). These signal states are described by \({\rho _{\mu } ^{{\sigma _l}}} = {e^{ - \mu }}\sum \limits _{i = 0}^\infty {\frac{{{\mu ^i}}}{{i!}}\left| k \right\rangle } {\left\langle k \right| _{{\sigma _l}}}.\) The two decoy states denoted as \({\rho _{v_1} ^{{\sigma _l}}}\), \({\rho _{v_2} ^{{\sigma _l}}}\) are similar to the above formula except that the different mean photon numbers. The polarization angles \(\sigma _l\) are chosen at random in \(\{ k\pi /4:\;0 \le k \le 7\}\). The client stores the sequence as \((\sigma _1,\ldots ,\sigma _N)\).

   (1.2) The client sends these signal states \(\rho _{\mu }^{{\sigma _l}}\)and two decoy states \({\rho _{v_1}^{\sigma _l}},{\rho _{v_2}^{\sigma _l}}\) to the server.

(2). Server’s preparation

   (2.1) For each received state , the server reports which pulses are received to the client.

(3). Client–server interaction

   (3.1) The client calculates the gains of signal and two decoy states (\(Q_{\mu }, Q_{v_1}, Q_{v_2}\)) from the statistics reported by the server and compares them with their expectation value based on overall transmittance T. The client aborts the protocol if the differences are not within her preset threshold, i.e.,\(\left( { - \left( {x{\sigma _k} + {{0.5} / {{N_k}}}} \right) ,\left( {x{\sigma _k} + {{0.5} / {{N_k}}}} \right) } \right) ,\) \(k=\mu ,v_1,v_2\) otherwise the protocol continues. The client then declares the position of the decoy states and the quantum computation scale S.

   (3.2) The server discards the decoy states, and the total remaining number of qubits is \(M_{\mu }\). The server then randomly divides these \(M_{\mu }\) signal states into S groups and performs the I1DC computation [23]. He can obtain the resulting state \(\left| {{\mathrm{{ + }}_\theta }} \right\rangle \), and reports the measurement information to the client.

   (3.3) Using her knowledge about the angles \(\sigma _{l}\) of the qubits used in the I1DC procedure by the server and the received measurement outcomes, the client computes \(\theta \) based on I1DC computation.

1.2 B. Infinite-size two decoy states

In the UBQC with two decoy states, we need to calculate the ratio of single photons in the signal states \(p_{1}\) for estimating the required number of pulses N in Eq. (3). Based on the two-decoy-states technique in QKD [34], some analogue conclusions can be used to estimate parameter \(p_{1}\) in the two-decoy-state RBSP protocol. In the above protocol, the gains of signal states and decoy states \(Q_{\mu },Q_{v_1},Q_{v_2}\) can be measured in the real system. To get a test of the efficiency, we consider the asymptotic case where the \(Q_{\mu }, Q_{v_1}\) and \(Q_{v_2}\) are replaced with the expectation values \({\bar{Q}}_\mu , {{\bar{Q}}_{v_1}}\) and \({{\bar{Q}}_{v_2} }\)(the dark count rate \(Y_0\approx {10^{ - 6}}\thicksim {10^{-5}}\)).

$$\begin{aligned} \begin{array}{l} {{\bar{Q}}_\mu }= {Y_0} + 1 - \exp ( - T\mu )\\ {{\bar{Q}}_{v_1} } = {Y_0} + 1 - \exp ( - Tv_1 )\\ {{\bar{Q}}_{v_2} }= {Y_0} + 1 - \exp ( - Tv_2 ). \end{array} \end{aligned}$$
(11)

According to conclusion in [34], we can get its lower bound, \({{\bar{Y}}_0^{L}}\).

$$\begin{aligned} {Y_0} \ge {\bar{Y}}_0^{L} = \max \left\{ {\frac{{{v_1}{{\bar{Q}}_{{v_2}}}{e^{{v_2}}} - {v_2}{{\bar{Q}}_{{v_1}}}{e^{{v_1}}}}}{{{v_1} - {v_2}}},0} \right\} . \end{aligned}$$
(12)

In Eq. (3), in order to optimize the quantity N, we need to estimate a accurate lower bound of \(p_{1}\). In combination with some conclusions in [39] and [34], an estimation of the gain of single photons \(Q_{1}\) has been given. Thus, we can easily estimate the lower bound of the ratio, \({\bar{p}}_1^{L}\), i.e.,

$$\begin{aligned} \begin{aligned}&{{\bar{p}}_1^{L}} = \frac{{{{\bar{Q}}_1^{L}}}}{{{{\bar{Q}}_\mu }}}=\frac{{{\bar{Y}}_1^{L}\mu {e^{ - \mu }}}}{{{{{\bar{Q}}}_\mu }}}\\&= \frac{{{\mu ^2}{e^{ - \mu }}}}{{\mu {v_1} - \mu {v_2} - v_1^2 + v_2^2}}\left[ {\frac{{{{{\bar{Q}}}_{{v_1}}}}}{{{{{\bar{Q}}}_\mu }}}{e^{{v_1}}} - } \right. \left. {\frac{{{{{\bar{Q}}}_{{v_2}}}}}{{{{{\bar{Q}}}_\mu }}}{e^{{v_2}}} - \frac{{v_1^2 - v_2^2}}{{{\mu ^2}{{{\bar{Q}}}_\mu }}}\left( {{{{\bar{Q}}}_\mu }{e^\mu } - {\bar{Y}}_0^{L}} \right) } \right] . \end{aligned} \end{aligned}$$
(13)

According to Eqs. (12) and (13), an accurate estimation of the lower bound of \(p_{1}\) can be obtained in two-decoy-state protocol. So then, we can also estimate the total required number of pulses for the computation scale S. The lower bound \(p_1^{L}\) with two decoy states is closer to the practical value than one-decoy-state case. Thus, for the quantity N, two-decoy-state method can achieve a better result than one-decoy-state case.

1.3 C. Asymptotic case

In the two-decoy-state case, we take the limit \(v_1\rightarrow 0,v_2\rightarrow 0\). The lower bound of the yield \(Y_1\) (the yield of a single state) becomes [34]

$$\begin{aligned} Y_1^{L,0,0} = Y_1^{L,{v_1},{v_2}}{|_{{v_1} \rightarrow 0,{v_2} \rightarrow 0}} = {Y_0} + T. \end{aligned}$$
(14)

Then, substituting Eqs. (11), (14) into Eq. (13), we can estimate the lower bound of the parameter \(p_1\) (the proportion of the single-photon states in signal states), i.e.,\(p_1^{L,0,0}\).

$$\begin{aligned} p_1^{L,0,0} = \frac{{Q_1^{L,0,0}}}{{{Q_\mu }}} = \frac{{Y_1^{L,0,0}\mu {e^{ - \mu }}}}{{{Y_0} + 1 - {e^{ - \mu T}}}} = \frac{{\mu {e^{ - \mu }}\left( {{Y_0} + T} \right) }}{{{Y_0} + 1 - {e^{ - \mu T}}}}. \end{aligned}$$
(15)

Substituting Eqs. (11), (15) into Eq. (3), we can estimate the lower bound of the required number of pulses in asymptotic case, \(N^{L,0,0}\).

1.4 D. Finite-size one decoy state

In one-decoy-state case, we can get the lower bound of the proportion of the single-photon states in signal states, \(p_1^{L,v_1}\) [34]. Combined with Eq. (7), we can estimate the lower bound of the ratio \(p_1\) in the fluctuation situation,\({\widetilde{p}}_1^{L,v_1}\).

$$\begin{aligned} {\widetilde{p}}_1^{L,{v_1}} = \frac{{{\widetilde{Q}}_1^{L,{v_1}}}}{{Q_\mu ^ + }} = \frac{{{\mu ^2}{e^{ - \mu }}}}{{\mu {v_1} - v_1^2}}\left( {\frac{{Q_{{v_1}}^ - {e^{{v_1}}}}}{{Q_\mu ^ + }} - \frac{{v_1^2{e^\mu }}}{{{\mu ^2}}} - \frac{{{\mu ^2} - v_1^2}}{{{\mu ^2}Q_\mu ^ + }}{\widetilde{Y}}_0^{\mathrm{Upper},{v_1}}} \right) \end{aligned}$$
(16)

where \({\widetilde{Y}}_0^{\mathrm{Upper},{v_1}} = {{{E_\mu }{Q_\mu ^+ }{e^\mu }} / {{e_0}}}\), the parameter \(E_\mu \) is error rate of signal states, \(e_0\) is the error rate of the background. Substituting Eqs. (7), (11) and (16) into Eq. (3), we can estimate the lower bound of the required number of pulses in the fluctuation situation,\({\widetilde{N}}^{L,v_1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Li, Q. Finite-data-size study on practical universal blind quantum computation. Quantum Inf Process 17, 171 (2018). https://doi.org/10.1007/s11128-018-1934-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1934-6

Keywords

Navigation