Abstract
Various results of the no-cloning theorem, no-deleting theorem and no-superposing theorem in quantum mechanics have been proved using the superposition principle and the linearity of quantum operations. In this paper, we investigate general transformations forbidden by quantum mechanics in order to unify these theorems. First, we prove that any useful information cannot be created from an unknown pure state which is randomly chosen from a Hilbert space according to the Harr measure. And then, we propose a unified no-go theorem based on a generalized no-superposing result. The new theorem includes the no-cloning theorem, no-anticloning theorem, no-partial-erasure theorem, no-splitting theorem, no-superposing theorem or no-encoding theorem as a special case. Moreover, it implies various new results. Third, we extend the new theorem into another form that includes the no-deleting theorem as a special case.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)
Diecks, D.: Communication by EPR devices. Phys. Lett. A 92, 271 (1982)
Yuen, H.P.: Amplification of quantum states and noiseless photon amplifiers. Phys. Lett. A 113, 405–407 (1986)
Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Norwell (1995)
Barnum, H., Caves, C.M., Fuchs, C.A., Jozsa, R., Schumacher, B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818 (1996)
Barnum, H., Barrett, J., Leifer, M., Wilce, A.: Generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501 (2007)
Kalev, A., Hen, I.: No-broadcasting theorem and its classical counterpart. Phys. Rev. Lett. 100, 210502 (2008)
Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)
Luo, S.L.: On quantum no-broadcasting. Lett. Math. Phys. 92, 143 (2010)
Luo, S.L., Sun, W.: Decomposition of bipartite states with applications to quantum no-broadcasting theorems. Phys. Rev. A 82, 012338 (2010)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)
Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s theorem without inequalities. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Springer, Dordrecht (1989)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201 (1991)
Branciard, C., Rosset, D., Gisin, N., Pironio, S.: Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Phys. Rev. A 85, 032119 (2012)
Chaves, R.: Polynomial bell inequalities. Phys. Rev. Lett. 116, 010402 (2016)
Luo, M.: Computationally efficient nonlinear Bell inequalities for general quantum networks. Phys. Rev. Lett. 120, 140402 (2018)
Lindblad, G.: A general no-cloning theorem. Lett. Math. Phys. 47, 189 (1999)
Barnum, H., Barrett, J., Leifer, M., Wilce, A.: Cloning and broadcasting in generic probabilistic theories. arXiv:quant-ph/0611295 (2006)
Barnum, H., Barrett, J., Leifer, M., Wilce, A.: Generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501 (2007)
Kaniowski, K., Lubnauer, K., Łuczak, A.: Multicloning and multibroadcasting in operator algebras. Q. J. Math. 66, 191–192 (2015)
Stinespring, W.F.: Positive functions on \(C^*\)-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)
Choi, M.-D.: Completely positive maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)
Kraus, K.: States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin (1983)
Miyadera, T., Imai, H.: No-cloning theorem on quantum logics. J. Math. Phys. 50, 1063 (2009)
Niestegge, G.: Non-classical conditional probability and the quantum no-cloning theorem. Phys. Scr. 90, 095101 (2015)
D’Ariano, G.M., Perinotti, P.: Quantum no-stretching: a geometrical interpretation of the no-cloning theorem. Phys. Lett. A 373, 2416–2419 (2009)
Abramsky, S.: No-cloning in categorical quantum mechanics. In: Gay, S., Mackie, I. (eds.) Semantic Techniques in Quantum Computation, pp. 1–28. Cambridge University Press, Cambridge (2010)
Bennett, C.H., Brassard, G.: In: Proceedings IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, p. 175. IEEE, New York (1984)
Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)
Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)
Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using \(d\)-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dužek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Towards practical and fast quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Pati, A.K., Braunstein, S.L.: Impossibility of deleting an unknown quantum state. Nature 404, 104 (2000)
Oszmaniec, M., Grudka, A., Horodecki, M., Wójcik, A.: Creation of superposition of unknown quantum states. Phys. Rev. Lett. 116, 110403 (2016)
Alvarez-Rodriguez, U., Sanz, M., Lamata, L., Solano, E.: The forbidden quantum adder. Sci. Rep. 5, 11983 (2015)
Luo, M.L., Li, H.R., Lai, H., Wang, X.: Unified quantum no-go theorems and transforming of quantum pure states in a restricted set. Quantum Inf. Process. 16, 297 (2017)
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)
Pati, A.K.: General impossible operations in quantum information. Phys. Rev. A 66, 062319 (2002)
Pati, A.K., Sanders, B.C.: No-partial erasure of quantum information. Phys. Lett. A 359, 31–36 (2006)
Zhou, D.L., Zeng, B., You, L.: Quantum information cannot be split into complementary parts. Phys. Lett. A 352, 41 (2006)
Riesz, F.C.: Sur les operations fonctionelles lineaires. R. Acad. Sci. Paris. 149, 974–977 (1909)
Duan, L.M., Guo, G.C.: A probabilistic cloning machine for replicating two non-orthogonal states. Phys. Lett. A 243, 261 (1998)
Duan, L.M., Guo, G.C.: Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett. 80, 4999 (1998)
Chefles, A., Barnett, S.M.: Quantum state separation, unambiguous discrimination and exact cloning. J. Phys. A 31, 10097 (1998)
Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339–347 (1998)
Chefles, A., Jozsa, R., Winter, A.: On the existence of physical transformations between sets of quantum states. Int. J. Quantum Inf. 02, 11–21 (2004)
Braunstein, S.L., Pati, A.K.: Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox. Phys. Rev. Lett. 98, 080502 (2007)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)
Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret? Phys. Rev. Lett. 83, 648 (1999)
Acknowledgements
We thank Luming Duan and Yaoyun Shi. This work was supported by the National Natural Science Foundation of China (Nos. 61772437, 61702427), Sichuan Youth Science and Technique Foundation (No. 2017JQ0048) and Fundamental Research Funds for the Central Universities (No. XDJK2016C043), Chuying Fellowship and the Doctoral Program of Higher Education (No. SWU115091).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, HR., Luo, MX. & Lai, H. Generalized quantum no-go theorems of pure states. Quantum Inf Process 17, 168 (2018). https://doi.org/10.1007/s11128-018-1936-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1936-4