Skip to main content
Log in

Self-assisted complete analysis of three-photon hyperentangled Greenberger–Horne–Zeilinger states with nitrogen-vacancy centers in microcavities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a self-assisted complete analysis scheme of three-photon hyperentangled Greenberger–Horne–Zeilinger (GHZ) states with nitrogen-vacancy (NV) centers in microcavities (NV center-cavity systems), which is used to distinguish 64 three-photon hyperentangled GHZ states entangled in polarization and spatial-mode degrees of freedom. In our scheme, only three NV center-cavity systems are required for distinguishing the 64 three-photon hyperentangled GHZ states, which is much simpler than the previous schemes. Moreover, the three-photon spatial-mode GHZ states are distinguished with the three NV center-cavity systems without affecting the hyperentangled state of three-photon system, so the three-photon polarization GHZ states can be distinguished with linear optical elements assisted by the spatial-mode entangled state of three-photon system. With our scheme, the difficulty in the experimental realization of complete analysis of hyperentangled GHZ states may be largely decreased, which could potentially improve the performance of high-capacity multi-party quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  6. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    ADS  Google Scholar 

  9. Hillery, M., Buz̆ek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    ADS  Google Scholar 

  11. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    ADS  Google Scholar 

  12. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    ADS  Google Scholar 

  13. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    ADS  Google Scholar 

  14. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Google Scholar 

  15. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    ADS  Google Scholar 

  16. Li, X.H.: Quantum secure direct communication. Acta Phys. Sin. 64, 160307 (2015)

    Google Scholar 

  17. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)

    ADS  Google Scholar 

  18. Vaidman, L., Yoran, N.: Methods for reliable teleportation. Phys. Rev. A 59, 11625 (1999)

    Google Scholar 

  19. Lütkenhaus, N., Calsamiglia, J., Suominen, K.A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295300 (1999)

    MathSciNet  Google Scholar 

  20. Kwiat, P.G., Weinfurter, H.: Embedded Bell-state analysis. Phys. Rev. A 58(R), 26236 (1998)

    MathSciNet  Google Scholar 

  21. Walborn, S.P., Ṕadua, S., Monken, C.H.: Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68, 042313 (2003)

    ADS  MathSciNet  Google Scholar 

  22. Schuck, C., Huber, G., Kurtsiefer, C.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006)

    ADS  Google Scholar 

  23. Barbieri, M., Vallone, G., Mataloni, P.: Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A 75, 042317 (2007)

    ADS  Google Scholar 

  24. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    ADS  Google Scholar 

  25. Bonato, C., Haupt, F., Oemrawsingh, S.S., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    ADS  Google Scholar 

  26. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    ADS  Google Scholar 

  27. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2016)

    ADS  Google Scholar 

  28. Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92, 042314 (2015)

    ADS  Google Scholar 

  29. Barreiro, J.T., Peters, N.K.N.A., Kwiat, P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)

    ADS  Google Scholar 

  30. Yang, T., Zhang, Q., Zhang, J., Yin, J., Zhao, Z., ZBukowski, M., Chen, Z.B., Pan, J.W.: All-versus-nothing violation of local realism by two-photon, four-dimensional entanglement. Phys. Rev. Lett. 95, 240406 (2005)

    ADS  Google Scholar 

  31. Vallone, G., Ceccarelli, R., De Martini, F., Mataloni, P.: Hyperentanglement of two photons in three degrees of freedom. Phys. Rev. A 79, 030301(R) (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Ceccarelli, R., Vallone, G., De Martini, F., Mataloni, P., Cabello, A.: Experimental entanglement and nonlocality of a two-photon six-qubit cluster state. Phys. Rev. Lett. 103, 160401 (2009)

    ADS  Google Scholar 

  33. Vallone, G., Donati, G., Ceccarelli, R., Mataloni, P.: Six-qubit two-photon hyperentangled cluster states: characterization and application to quantum computation. Phys. Rev. A 81, 052301 (2010)

    ADS  Google Scholar 

  34. Gao, W.B., Lu, C.Y., Yao, X.C., Xu, P., Gühne, O., Goebel, A., Chen, Y.A., Peng, C.Z., Chen, Z.B., Pan, J.W.: Experimental demonstration of a hyper-entangled ten-qubit Schröinger cat state. Nat. Phys. 6, 331 (2010)

    Google Scholar 

  35. Kang, D.P., Helt, L.G., Zhukovsky, S.V., Torres, J.P., Sipe, J.E., Helmy, A.S.: Hyperentangled photon sources in semiconductor waveguides. Phys. Rev. A 89, 023833 (2014)

    ADS  Google Scholar 

  36. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017)

    Google Scholar 

  37. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282 (2008)

    Google Scholar 

  38. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    ADS  Google Scholar 

  39. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664 (2012)

    ADS  Google Scholar 

  40. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)

    ADS  Google Scholar 

  41. Liu, Q., Zhang, M.: Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A 91, 062321 (2015)

    ADS  Google Scholar 

  42. Li, X.H., Ghose, S.: Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity. Phys. Rev. A 93, 022302 (2016)

    ADS  Google Scholar 

  43. Liu, Q., Wang, G.Y., Ai, Q., Zhang, M., Deng, F.G.: Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity. Sci. Rep. 6, 22016 (2016)

    ADS  Google Scholar 

  44. Wang, G.Y., Ai, Q., Ren, B.C., Li, T., Deng, F.G.: Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express 24, 28444 (2016)

    ADS  Google Scholar 

  45. Wang, X.L., Cai, X.D., Su, Z.E.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)

    ADS  Google Scholar 

  46. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)

    ADS  Google Scholar 

  47. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    ADS  Google Scholar 

  48. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    ADS  Google Scholar 

  49. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)

    ADS  Google Scholar 

  50. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)

    ADS  Google Scholar 

  51. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-statejoining method. Phys. Rev. A 90, 052309 (2014)

    ADS  Google Scholar 

  52. Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)

    ADS  Google Scholar 

  53. Du, F.F., Li, T., Long, G.L.: Refined hyperentanglement purification of two-photon systems for highcapacity quantum communication with cavity-assisted interaction. Ann. Phys. 375, 105 (2016)

    ADS  MATH  Google Scholar 

  54. Wang, T.J., Liu, L.L., Zhang, R., Cao, C., Wang, C.: One-step hyperentanglement purification and hyperdistillation with linear optics. Opt. Express 23, 9284–9294 (2015)

    ADS  Google Scholar 

  55. Mi, S.C., Wang, C., Wang, T.J.: Hyperentanglement purificationwith linear optics assisted by W-states. Quantum Inf. Process. 14, 623–634 (2014)

    ADS  MATH  Google Scholar 

  56. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    ADS  Google Scholar 

  57. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum dot spins inside optical microcavities. Opt. Express 22, 6547–6561 (2014)

    ADS  Google Scholar 

  58. Ren, B.C., Long, G.L.: Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates. Sci. Rep. 5, 16444 (2015)

    ADS  Google Scholar 

  59. Li, X.H., Ghose, S.: Hyperconcentration for multipartite entanglement via linear optics. Laser Phys. Lett. 11, 125201 (2014)

    ADS  Google Scholar 

  60. Li, X.H., Ghose, S.: Hyperentanglement concentration for time-bin and polarization hyperentangled photons. Phys. Rev. A 91, 062302 (2015)

    ADS  Google Scholar 

  61. Li, X.H., Ghose, S.: Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity. Opt. Express 23, 3550–3562 (2015)

    ADS  Google Scholar 

  62. Cao, C., Wang, T.J., Mi, S.C., Zhang, R., Wang, C.: Nonlocal hyperconcentration on entangled photons using photonic module system. Ann. Phys. 369, 128–138 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  63. Ren, B.C., Wang, H., Alzahrani, F., Hobiny, A., Deng, F.G.: Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics. Ann. Phys. 385, 86–94 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  64. Liu, H.J., Xia, Y., Song, J.: Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity. Quantum Inf. Process. 15, 2033–2052 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  65. Wang, H., Ren, B.C., Alzahrani, F., Hobiny, A., Deng, F.G.: Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics. Quantum Inf. Process. 16, 237 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  66. Li, T., Deng, F.G., Wang, G.Y., Long, G.L.: Deterministic error correction for nonlocal spatial polarization hyperentanglement. Sci. Rep. 6, 20677 (2016)

    ADS  Google Scholar 

  67. Jiang, Y.X., Guo, P.L., Gao, C.Y., Wang, H.B., Alzahrani, F., Hobiny, A., Deng, F.G.: Self-error-rejecting photonic qubit transmission in polarization-spatial modes with linear optical elements. Sci. China Phys. Mech. Astron. 60, 120312 (2017)

    ADS  Google Scholar 

  68. Cheng-Yan Gao, C.Y., Wang, G.Y., Zhang, H., Deng, F.G.: Multi-photon self-error-correction hyperentanglement distribution over arbitrary collective-noise channels. Quantum Inf. Process. 16, 11 (2017)

    ADS  MATH  Google Scholar 

  69. Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatialpolarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)

    ADS  Google Scholar 

  70. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)

    Google Scholar 

  71. Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with the dipole induced transparency in weak-coupling regime. Phys. Rev. A 91, 032328 (2015)

    ADS  Google Scholar 

  72. Li, T., Long, G.L.: Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A 94, 022343 (2016)

    ADS  Google Scholar 

  73. Ren, B.C., Deng, F.G.: Robust hyperparallel photonic quantum entangling gate with cavity QED. Opt. Express 25, 10863–10873 (2017)

    ADS  Google Scholar 

  74. Wei, H.R., Deng, F.G., Long, G.L.: Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities. Opt. Express 24, 18619–18630 (2016)

    ADS  Google Scholar 

  75. Pan, J.W., Zeilinger, A.: Greenberger–Horne–Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998)

    ADS  MathSciNet  Google Scholar 

  76. Song, S., Cao, Y., Sheng, Y.B., Long, G.L.: Complete Greenberger–Horne–Zeilinger state analyzer using hyperentanglement. Quantum Inf. Process 12, 381–393 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  77. Zeng, Z., Wang, C., Li, X.H.: Complete N-qubit GHZ States analysis assisted by frequency degree of freedom. Commun. Theor. Phys. 62, 683–688 (2014)

    ADS  MATH  Google Scholar 

  78. Guo, Q., Cheng, L.Y., Wang, H.F., Zhang, S., Yeon, K.H.: Complete N-photon Greenberger–Horne–Zeilinger-state analyzer and its applications to quantum communication. Opt. Commun. 285, 1571–1575 (2012)

    ADS  Google Scholar 

  79. Wang, X.W., Zhang, D.Y., Tang, S.Q., Xie, L.J.: Nondestructive Greenberger–Horne–Zeilinger-state analyzer. Quantum Inf. Process 12, 1065–1075 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  80. Lin, X.M., Chen, Z.H., Lin, G.W., Chen, X.D., Ni, B.B.: Optical Bell state and Greenberger–Horne–Zeilinger-state analyzers through the cavity input–output process. Opt. Commun. 282, 3371–3374 (2009)

    ADS  Google Scholar 

  81. Fan, L.L., Xia, Y., Song, J.: Complete hyperentanglement-assisted multi-photon Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity. Opt. Commun. 317, 102–106 (2014)

    ADS  Google Scholar 

  82. Liu, Q., Zhang, M.: Complete and deterministic analysis for spatial-polarization hyperentangled Greenberger–Horne–Zeilinger states with quantum-dot cavity systems. J. Opt. Soc. Am. B 30, 2263–2270 (2013)

    ADS  Google Scholar 

  83. Xia, Y., Chen, Q.Q., Song, J., Song, H.S.: Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1029–1037 (2012)

    ADS  Google Scholar 

  84. Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sørensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730 (2010)

    ADS  Google Scholar 

  85. Lenef, A., Rand, S.C.: Electronic structure of the NV center in diamond: theory. Phys. Rev. B. 53, 13441 (1996)

    ADS  Google Scholar 

  86. Faraon, A., Santori, C., Huang, Z., Acosta, V.M., Beausoleil, R.G.: Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012)

    ADS  Google Scholar 

  87. Schietinger, S., Barth, M., Aichele, T., Benson, O.: Plasmon-enhanced single photon emission from a nanoassembled metal–diamond hybrid structure at room temperature. Nano. Lett. 9, 1694 (2009)

    ADS  Google Scholar 

  88. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    MATH  Google Scholar 

  89. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    ADS  Google Scholar 

  90. An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities. Phys. Rev. A 79, 032303 (2009)

    ADS  Google Scholar 

  91. Buckley, B.B., Fuchs, G.D., Bassett, L.C., Awschalom, D.D.: Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212 (2010)

    ADS  Google Scholar 

  92. Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383 (2009)

    ADS  Google Scholar 

  93. Fuchs, G.D., Dobrovitski, V.V., Toyli, D.M., Heremans, F.J., Awschalom, D.D.: Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520 (2009)

    ADS  Google Scholar 

  94. Bernien, H., Hensen, B., Pfaff, W., Koolstra, G., Blok, M.S., Robledo, L., Taminiau, T.H., Markham, M.D., Twitchen, J., Childress, L., Hanson, R.: Heralded entanglement between solid-state qubits separated by 3 meters. Nature 497, 86 (2013)

    ADS  Google Scholar 

  95. Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F., Wrachtrup, J.: Multipartite entanglement among single spins in diamond. Science 320, 1326 (2008)

    ADS  Google Scholar 

  96. Barclay, P.E., Fu, K.M., Santori, C., Beausoleil, R.G.: Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers. Opt. Express 17, 8081 (2009)

    ADS  Google Scholar 

  97. Larsson, M., Dinyari, K.N., Wang, H.: Composite optical microcavity of diamond nanopillar and silica microsphere. Nano Lett. 9, 1447 (2009)

    ADS  Google Scholar 

  98. Jiang, L., Hodges, J.S., Maze, J.R., Maurer, P., Taylor, J.M., Cory, D.G., Hemmer, P.R., Walsworth, R.L., Yacoby, A., Zibrov, A.S., Lukin, M.D.: Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267 (2009)

    ADS  Google Scholar 

  99. Robledo, L., Childress, L., Bernien, H., Hensen, B., Alkemade, P.F.A., Hanson, R.: High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574 (2011)

    ADS  Google Scholar 

  100. Park, Y.S., Cook, A.K., Wang, H.: Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075 (2006)

    ADS  Google Scholar 

  101. Teissier, J., Barfuss, A., Appel, P., Neu, E., Maletinsky, P.: Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett. 113, 020503 (2014)

    ADS  Google Scholar 

  102. Barclay, P.E., Fu, K.M.C., Santori, C., Beausoleil, R.G.: Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond. Appl. Phys. Lett. 95, 191115 (2009)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11475021 and the National Key Basic Research Program of China under Grant No. 2013CB922000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Zhang.

Appendix A

Appendix A

In order to describe the state change of each photon after passing through our hyperentanglement analysis device more clearly, we summarize the detailed steps in the following appendix. Firstly, we put the spatial-modes \(a_1\) and \(a_2\) of photon A into the quantum circuit shown in Fig. 2. After the spatial mode \(a_1\) interacts with NV center-cavity system \(\hbox {NV}_1\), the state of the system composed of \(\hbox {NV}_1\) and photons A, B, C changes according to:

$$\begin{aligned}&|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}|\varphi ^{+}\rangle _{1}\xrightarrow {\hbox {NV}_1} \nonumber \\&\quad \frac{1}{2\sqrt{2}}\{|a_1\rangle |b_1\rangle |c_1\rangle (|RRR\rangle \mp |LLL\rangle )(|-1\rangle -|+1\rangle )\nonumber \\&\quad \pm \,|a_2\rangle |b_2\rangle |c_2\rangle (|RRR\rangle \pm |LLL\rangle )(|-1\rangle +|+1\rangle )\},\nonumber \\&|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}|\varphi ^{+}\rangle _{1}\xrightarrow {\hbox {NV}_1} \nonumber \\&\quad \frac{1}{2\sqrt{2}}\{|a_1\rangle |b_1\rangle |c_1\rangle (|LRR\rangle \mp |RLL\rangle ) (|+1\rangle -|-1\rangle )\nonumber \\&\quad \pm \,|a_2\rangle |b_2\rangle |c_2\rangle (|LRR\rangle \pm |RLL\rangle )(|-1\rangle +|+1\rangle )\}. \end{aligned}$$
(A1)

Then, the spatial mode \(a_1\) passes through the HWP shown in Fig. 2, which is used to perform a phase-flip operation \(Z=|R\rangle \langle R|-|L\rangle \langle L|\) on the polarization DOF of a photon. The state of the system composed of \(\hbox {NV}_1\) and photons A, B, and C undergoes the transformation:

$$\begin{aligned}&|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}|\varphi ^{+}\rangle _{1}\xrightarrow {\hbox {NV}_1,\hbox {HWP}} \nonumber \\&\quad \frac{1}{2\sqrt{2}}\{|a_1\rangle |b_1\rangle |c_1\rangle (|RRR\rangle \pm |LLL\rangle )(|-1\rangle -|+1\rangle )\nonumber \\&\quad \pm \,|a_2\rangle |b_2\rangle |c_2\rangle (|RRR\rangle \pm |LLL\rangle )(|-1\rangle +|+1\rangle )\},\nonumber \\&|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}|\varphi ^{+}\rangle _{1}\xrightarrow {\hbox {NV}_1,\hbox {HWP}} \nonumber \\&\quad \frac{1}{2\sqrt{2}}\{|a_1\rangle |b_1\rangle |c_1\rangle (|LRR\rangle \pm |RLL\rangle )(|-1\rangle -|+1\rangle )\nonumber \\&\quad \pm \,|a_2\rangle |b_2\rangle |c_2\rangle (|LRR\rangle \pm |RLL\rangle )(|-1\rangle +|+1\rangle )\}. \end{aligned}$$
(A2)

The results of the operations on states \(|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{100}\rangle _{S}\), \(|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}\), \(|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{001}\rangle _{S}\), \(|\Phi ^{\pm }_{001}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}\), \(|\Phi ^{\pm }_{001}\rangle _{P}|\Phi ^{\pm }_{100}\rangle _{S}\), \(|\Phi ^{\pm }_{001}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}\), \(|\Phi ^{\pm }_{001}\rangle _{P}|\Phi ^{\pm }_{001}\rangle _{S}\), \(|\Phi ^{\pm }_{010}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}\), \(|\Phi ^{\pm }_{010}\rangle _{P}|\Phi ^{\pm }_{100}\rangle _{S}\), \(|\Phi ^{\pm }_{010}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}\), and \(|\Phi ^{\pm }_{010}\rangle _{P}|\Phi ^{\pm }_{001}\rangle _{S}\) are the same as the result of the operations on state \(|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}\) after the spatial mode \(a_1\) interacts with NV center-cavity system \(\hbox {NV}_1\) and HWP. The results of the operations on states \(|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{100}\rangle _{S}\), \(|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}\), and \(|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{001}\rangle _{S}\) are the same as the result of the operations on state \(|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}\) after the spatial mode \(a_1\) interacts with NV center-cavity system \(\hbox {NV}_1\) and HWP.

Secondly, we put the spatial modes \(b_1\) and \(b_2\) of photon B into the quantum circuit shown in Fig. 2. After the spatial mode \(b_1\) passes through NV center-cavity system \(\hbox {NV}_1\) and HWP, the state of the system composed of \(\hbox {NV}_1\) and photons A, B, and C changes according to:

$$\begin{aligned}&|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}|\varphi ^{+}\rangle _{1}\xrightarrow {\hbox {NV}_1,\hbox {HWP}} \nonumber \\&\quad \frac{1}{2\sqrt{2}}\{|a_1\rangle |b_1\rangle |c_1\rangle (|RRR\rangle \pm |LLL\rangle )(|-1\rangle +|+1\rangle )\nonumber \\&\quad \pm \,|a_2\rangle |b_2\rangle |c_2\rangle (|RRR\rangle \pm |LLL\rangle )(|-1\rangle +|+1\rangle )\},\nonumber \\&|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}|\varphi ^{+}\rangle _{1}\xrightarrow {\hbox {NV}_1,\hbox {HWP}} \nonumber \\&\frac{1}{2\sqrt{2}}\{|a_1\rangle |b_2\rangle |c_1\rangle (|RRR\rangle \pm |LLL\rangle )(|-1\rangle -|+1\rangle )\nonumber \\&\quad \pm \,|a_2\rangle |b_1\rangle |c_2\rangle (|RRR\rangle \pm |LLL\rangle )(|-1\rangle -|+1\rangle )\},\nonumber \\&|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}|\varphi ^{+}\rangle _{1}\xrightarrow {\hbox {NV}_1,\hbox {HWP}} \nonumber \\&\quad \frac{1}{2\sqrt{2}}\{|a_1\rangle |b_1\rangle |c_1\rangle (|LRR\rangle \pm |RLL\rangle )(|-1\rangle +|+1\rangle )\nonumber \\&\quad \pm \,|a_2\rangle |b_2\rangle |c_2\rangle (|LRR\rangle \pm |RLL\rangle )(|-1\rangle +|+1\rangle )\},\nonumber \\&|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}|\varphi ^{+}\rangle _{1}\xrightarrow {\hbox {NV}_1,\hbox {HWP}} \nonumber \\&\quad \frac{1}{2\sqrt{2}}\{|a_1\rangle |b_2\rangle |c_1\rangle (|LRR\rangle \pm |RLL\rangle )(|-1\rangle -|+1\rangle )\nonumber \\&\quad \pm \,|a_2\rangle |b_1\rangle |c_2\rangle (|LRR\rangle \pm |RLL\rangle )(|-1\rangle -|+1\rangle )\}. \end{aligned}$$
(A3)

The results of the operations on states \(|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{001}\rangle _{S}\), \(|\Phi ^{\pm }_{001}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}\), and \(|\Phi ^{\pm }_{001}\rangle _{P}|\Phi ^{\pm }_{001}\rangle _{S}\) are the same as the result of the operations on state \(|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}\) after the spatial mode \(b_1\) interacts with NV center-cavity system \(\hbox {NV}_1\) and HWP. The results of the operations on states \(|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{100}\rangle _{S}\), \(|\Phi ^{\pm }_{001}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}\), and \(|\Phi ^{\pm }_{001}\rangle _{P}|\Phi ^{\pm }_{100}\rangle _{S}\) are the same as the result of the operations on state \(|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}\) after the spatial mode \(b_1\) interacts with NV center-cavity system \(\hbox {NV}_1\) and HWP. The results of the operations on states \(|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{001}\rangle _{S}\), \(|\Phi ^{\pm }_{010}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}\), and \(|\Phi ^{\pm }_{010}\rangle _{P}|\Phi ^{\pm }_{001}\rangle _{S}\) are the same as the result of the operations on state \(|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}\) after the spatial mode \(b_1\) interacts with NV center-cavity system \(\hbox {NV}_1\) and HWP. The results of the operations on states \(|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{100}\rangle _{S}\), \(|\Phi ^{\pm }_{010}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}\), and \(|\Phi ^{\pm }_{010}\rangle _{P}|\Phi ^{\pm }_{100}\rangle _{S}\) are the same as the result of the operations on state \(|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}\) after the spatial mode \(b_1\) interacts with NV center-cavity system \(\hbox {NV}_1\) and HWP. That is, if the spatial-mode DOF of photons A and B is in the odd-parity state (\(a_1b_2\) and \(a_2b_1\)), the electron spin state of \(\hbox {NV}_1\) changes to \(|\varphi ^{-}\rangle _{1}\).

Thirdly, we put the spatial modes \(a_1\) of photon A and \(c_1\) of photon C into \(\hbox {NV}_2\) and HWP in sequence, as shown in Fig. 2. Then, the state of the system composed of \(\hbox {NV}_1\), \(\hbox {NV}_2\) and photons A, B, and C changes to:

$$\begin{aligned} |\Phi _{000}^ \pm {\rangle _P}|\Phi _{000}^ \pm {\rangle _S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}&\xrightarrow {\hbox {NV}1,\hbox {HWP},\hbox {NV}2,\hbox {HWP}}&|\Phi _{000}^ \pm {\rangle _P}|\Phi _{000}^ \pm {\rangle _S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}, \nonumber \\ |\Phi _{000}^ \pm {\rangle _P}|\Phi _{100}^ \pm {\rangle _S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}&\xrightarrow {\hbox {NV}1,\hbox {HWP},\hbox {NV}2,\hbox {HWP}}&|\Phi _{000}^ \pm {\rangle _P}|\Phi _{100}^ \pm {\rangle _S}|\varphi ^{-}\rangle _{1}|\varphi ^{-}\rangle _{2}, \nonumber \\ |\Phi _{000}^ \pm {\rangle _P}|\Phi _{010}^ \pm {\rangle _S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}&\xrightarrow {\hbox {NV}1,\hbox {HWP},\hbox {NV}2,\hbox {HWP}}&|\Phi _{000}^ \pm {\rangle _P}|\Phi _{010}^ \pm {\rangle _S}|\varphi ^{-}\rangle _{1}|\varphi ^{+}\rangle _{2}, \nonumber \\ |\Phi _{000}^ \pm {\rangle _P}|\Phi _{001}^ \pm {\rangle _S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}&\xrightarrow {\hbox {NV}1,\hbox {HWP},\hbox {NV}2,\hbox {HWP}}&|\Phi _{000}^ \pm {\rangle _P}|\Phi _{001}^ \pm {\rangle _S}|\varphi ^{+}\rangle _{1}|\varphi ^{-}\rangle _{2}.\nonumber \\ \end{aligned}$$
(A4)

The results of the operations on states \(|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}\), \(|\Phi ^{\pm }_{010}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}\), and \(|\Phi ^{\pm }_{001}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}\) are the same as the result of the operations on state \(|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{000}\rangle _{S}\) after the spatial modes \(a_1\) and \(b_1\) interact with NV center-cavity systems \(\hbox {NV}_1\), \(\hbox {NV}_2\), and HWPs. The results of the operations on states \(|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{100}\rangle _{S}\), \(|\Phi ^{\pm }_{010}\rangle _{P}|\Phi ^{\pm }_{100}\rangle _{S}\), and \(|\Phi ^{\pm }_{001}\rangle _{P}|\Phi ^{\pm }_{100}\rangle _{S}\) are the same as the result of the operations on state \(|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{100}\rangle _{S}\) after the spatial modes \(a_1\) and \(b_1\) interact with NV center-cavity systems \(\hbox {NV}_1\), \(\hbox {NV}_2\) and HWPs. The results of the operations on states \(|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}\), \(|\Phi ^{\pm }_{010}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}\), and \(|\Phi ^{\pm }_{001}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}\) are the same as the result of the operations on state \(|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{010}\rangle _{S}\) after the spatial modes \(a_1\) and \(b_1\) interact with NV center-cavity systems \(\hbox {NV}_1\), \(\hbox {NV}_2\), and HWPs. The results of the operations on states \(|\Phi ^{\pm }_{100}\rangle _{P}|\Phi ^{\pm }_{001}\rangle _{S}\), \(|\Phi ^{\pm }_{010}\rangle _{P}|\Phi ^{\pm }_{001}\rangle _{S}\), and \(|\Phi ^{\pm }_{001}\rangle _{P}|\Phi ^{\pm }_{001}\rangle _{S}\) are the same as the result of the operations on state \(|\Phi ^{\pm }_{000}\rangle _{P}|\Phi ^{\pm }_{001}\rangle _{S}\) after the spatial modes \(a_1\) and \(b_1\) interact with NV center-cavity systems \(\hbox {NV}_1\), \(\hbox {NV}_2\), and HWPs. According to the response of the electron spin states in \(\hbox {NV}_1\) and \(\hbox {NV}_2\), we can divide the eight spatial-mode states into four groups, each of which contains two spatial-mode states with different phases.

At last, we let the three photons A, B, and C pass through the first-column beam splitters. Here, the beam splitter (BS) can accomplish a Hadamard operation on the spatial-mode DOF of a photon,

$$\begin{aligned} |x_{1}\rangle&\xrightarrow {\hbox {BS}}\frac{1}{\sqrt{2}}(|x_{1}\rangle +|x_{2}\rangle ),\;\;\;\; |x_{2}\rangle&\xrightarrow {\hbox {BS}}\frac{1}{\sqrt{2}}(|x_{1}\rangle -|x_{2}\rangle ), \end{aligned}$$
(A5)

where x denotes a, b, or c. After the three photons A, B, and C pass through BSs, the eight spatial-mode states will transform as

$$\begin{aligned} |\Phi ^{+}_{000}\rangle _{S}=\frac{1}{\sqrt{2}}(|a_{1}b_{1}c_{1}\rangle +|a_{2}b_{2}c_{2}\rangle )&\xrightarrow {\hbox {BS}}&|\Phi ^{+}_{000}\rangle '_{S}=\frac{1}{2}(|a_{1}b_{1}c_{1}\rangle +|a_{2}b_{2}c_{1}\rangle \nonumber \\&+\,|a_{1}b_{2}c_{2}\rangle +|a_{2}b_{1}c_{2}\rangle ),\nonumber \\ |\Phi ^{-}_{000}\rangle _{S}=\frac{1}{\sqrt{2}}(|a_{1}b_{1}c_{1}\rangle -|a_{2}b_{2}c_{2}\rangle )&\xrightarrow {\hbox {BS}}&|\Phi ^{-}_{000}\rangle '_{S}=\frac{1}{2}(|a_{1}b_{2}c_{1}\rangle +|a_{2}b_{1}c_{1}\rangle \nonumber \\&+\,|a_{1}b_{1}c_{2}\rangle +|a_{2}b_{2}c_{2}\rangle ),\nonumber \\ |\Phi ^{+}_{100}\rangle _{S}=\frac{1}{\sqrt{2}}(|a_{2}b_{1}c_{1}\rangle +|a_{1}b_{2}c_{2}\rangle )&\xrightarrow {\hbox {BS}}&|\Phi ^{+}_{100}\rangle '_{S}=\frac{1}{2}(|a_{1}b_{1}c_{1}\rangle -|a_{2}b_{2}c_{1}\rangle \nonumber \\&+\,|a_{1}b_{2}c_{2}\rangle -|a_{2}b_{1}c_{2}\rangle ),\nonumber \\ |\Phi ^{-}_{100}\rangle _{S}=\frac{1}{\sqrt{2}}(|a_{2}b_{1}c_{1}\rangle -|a_{1}b_{2}c_{2}\rangle )&\xrightarrow {\hbox {BS}}&|\Phi ^{-}_{100}\rangle '_{S}=\frac{1}{2}(|a_{1}b_{2}c_{1}\rangle -|a_{2}b_{1}c_{1}\rangle \nonumber \\&+\,|a_{1}b_{1}c_{2}\rangle -|a_{2}b_{2}c_{2}\rangle ),\nonumber \\ |\Phi ^{+}_{010}\rangle _{S}=\frac{1}{\sqrt{2}}(|a_{1}b_{2}c_{1}\rangle + |a_{2}b_{1}c_{2}\rangle )&\xrightarrow {\hbox {BS}}&|\Phi ^{+}_{010}\rangle '_{S}=\frac{1}{2}(|a_{1}b_{1}c_{1}\rangle -|a_{2}b_{2}c_{1}\rangle -|a_{1}b_{2}c_{2}\rangle \nonumber \\&+\,|a_{2}b_{1}c_{2}\rangle ),\nonumber \\ |\Phi ^{-}_{010}\rangle _{S}=\frac{1}{\sqrt{2}}(|a_{1}b_{2}c_{1}\rangle -|a_{2}b_{1}c_{2}\rangle )&\xrightarrow {\hbox {BS}}&|\Phi ^{-}_{010}\rangle '_{S}=\frac{1}{2}(|a_{2}b_{1}c_{1}\rangle +|a_{1}b_{1}c_{2}\rangle \nonumber \\&-\,|a_{1}b_{2}c_{1}\rangle -|a_{2}b_{2}c_{2}\rangle ),\nonumber \\ |\Phi ^{+}_{001}\rangle _{S}=\frac{1}{\sqrt{2}}(|a_{1}b_{1}c_{2}\rangle +|a_{2}b_{2}c_{1}\rangle )&\xrightarrow {\hbox {BS}}&|\Phi ^{+}_{001}\rangle '_{S}=\frac{1}{2}(|a_{1}b_{1}c_{1}\rangle +|a_{2}b_{2}c_{1}\rangle \nonumber \\&-\,|a_{1}b_{2}c_{2}\rangle -|a_{2}b_{1}c_{2}\rangle ),\nonumber \\ |\Phi ^{-}_{001}\rangle _{S}=\frac{1}{\sqrt{2}}(|a_{1}b_{1}c_{2}\rangle -|a_{2}b_{2}c_{1}\rangle )&\xrightarrow {\hbox {BS}}&|\Phi ^{-}_{001}\rangle '_{S}=\frac{1}{2}(|a_{1}b_{2}c_{1}\rangle +|a_{2}b_{1}c_{1}\rangle \nonumber \\&-\,|a_{1}b_{1}c_{2}\rangle -|a_{2}b_{2}c_{2}\rangle ). \end{aligned}$$
(A6)

Then, we let the three photons A, B, and C pass through the quantum circuit shown in Fig. 2 in sequence. That is, the spatial modes \(a_2\), \(b_2\), and \(c_2\) of photons A, B, and C interact with the NV center-cavity system \(\hbox {NV}_3\) and HWP, which can distinguish the phase information of the initial spatial-mode GHZ states. Then, the state of the system composed of \(\hbox {NV}_1\), \(\hbox {NV}_2\), \(\hbox {NV}_3\) and three-photon system ABC is transformed into:

$$\begin{aligned}&|\Phi _{000}^ \pm {\rangle _P} |\Phi _{000}^ + {\rangle ' _S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}|\varphi ^{+}\rangle _{3}\nonumber \\&\quad \xrightarrow {\hbox {NV}_1,\hbox {HWP},\hbox {NV}_2,\hbox {HWP},\hbox {BS},\hbox {NV}_3,\hbox {HWP}}|\Phi _{000}^ \pm {\rangle _P} |\Phi _{000}^ + {\rangle ' _S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}|\varphi ^{+}\rangle _{3},\nonumber \\&|\Phi _{000}^ \pm {\rangle _P}|\Phi _{000}^ - {\rangle ' _S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}|\varphi ^{+}\rangle _{3}\nonumber \\&\quad \xrightarrow {\hbox {NV}_1,\hbox {HWP},\hbox {NV}_2,\hbox {HWP},\hbox {BS},\hbox {NV}_3,\hbox {HWP}}|\Phi _{000}^ \pm {\rangle _P} |\Phi _{000}^ - {\rangle ' _S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}|\varphi ^{-}\rangle _{3},\nonumber \\&|\Phi _{000}^ \pm {\rangle _P}|\Phi _{100}^ +{\rangle '_S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}|\varphi ^{+}\rangle _{3}\nonumber \\&\quad \xrightarrow {\hbox {NV}_1,\hbox {HWP},\hbox {NV}_2,\hbox {HWP},\hbox {BS},\hbox {NV}_3,\hbox {HWP}}|\Phi _{000}^ \pm {\rangle _P} |\Phi _{100}^ + {\rangle ' _S}|\varphi ^{-}\rangle _{1}|\varphi ^{-}\rangle _{2}|\varphi ^{+}\rangle _{3},\nonumber \\&|\Phi _{000}^ \pm {\rangle _P} |\Phi _{100}^ -{\rangle '_S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}|\varphi ^{+}\rangle _{3}\nonumber \\&\quad \xrightarrow {\hbox {NV}_1,\hbox {HWP},\hbox {NV}_2,\hbox {HWP},\hbox {BS},\hbox {NV}_3,\hbox {HWP}}|\Phi _{000}^ \pm {\rangle _P} |\Phi _{100}^ - {\rangle ' _S}|\varphi ^{-}\rangle _{1}|\varphi ^{-}\rangle _{2}|\varphi ^{-}\rangle _{3},\nonumber \\&|\Phi _{000}^ \pm {\rangle _P} |\Phi _{010}^ + {\rangle ' _S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}|\varphi ^{+}\rangle _{3}\nonumber \\&\quad \xrightarrow {\hbox {NV}_1,\hbox {HWP},\hbox {NV}_2,\hbox {HWP},\hbox {BS},\hbox {NV}_3,\hbox {HWP}}|\Phi _{000}^ \pm {\rangle _P} |\Phi _{010}^ + {\rangle ' _S}|\varphi ^{-}\rangle _{1}|\varphi ^{+}\rangle _{2}|\varphi ^{+}\rangle _{3},\nonumber \\&|\Phi _{000}^ \pm {\rangle _P} |\Phi _{010}^ - {\rangle ' _S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}|\varphi ^{+}\rangle _{3}\nonumber \\&\quad \xrightarrow {\hbox {NV}_1,\hbox {HWP},\hbox {NV}_2,\hbox {HWP},\hbox {BS},\hbox {NV}_3,\hbox {HWP}}|\Phi _{000}^ \pm {\rangle _P} |\Phi _{010}^ - {\rangle ' _S}|\varphi ^{-}\rangle _{1}|\varphi ^{+}\rangle _{2}|\varphi ^{-}\rangle _{3},\nonumber \\&|\Phi _{000}^ \pm {\rangle _P} |\Phi _{001}^ +{\rangle ' _S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}\varphi ^{+}\rangle _{3}\nonumber \\&\quad \xrightarrow {\hbox {NV}_1,\hbox {HWP},\hbox {NV}_2,\hbox {HWP},\hbox {BS},\hbox {NV}_3,\hbox {HWP}} |\Phi _{000}^ \pm {\rangle _P} |\Phi _{001}^ + {\rangle ' _S}|\varphi ^{+}\rangle _{1}|\varphi ^{-}\rangle _{2}|\varphi ^{+}\rangle _{3},\nonumber \\&|\Phi _{000}^ \pm {\rangle _P} |\Phi _{001}^ -{\rangle ' _S}|\varphi ^{+}\rangle _{1}|\varphi ^{+}\rangle _{2}|\varphi ^{+}\rangle _{3}\nonumber \\&\quad \xrightarrow {\hbox {NV}_1,\hbox {HWP},\hbox {NV}_2,\hbox {HWP},\hbox {BS},\hbox {NV}_3,\hbox {HWP}} |\Phi _{000}^ \pm {\rangle _P} |\Phi _{001}^ - {\rangle ' _S}|\varphi ^{+}\rangle _{1}|\varphi ^{-}\rangle _{2}|\varphi ^{-}\rangle _{3}.\quad \qquad \end{aligned}$$
(A7)

If the polarization DOF of the three-photon system is in one of the states \(|\Phi _{100}^ \pm {\rangle _P}\), \(|\Phi _{010}^ \pm {\rangle _P}\) and \(|\Phi _{001}^ \pm {\rangle _P}\), the phase information of the initial spatial-mode DOF of three-photon system can be distinguished in the same way. Then, we can use the second-column BS’s to restore the spatial-mode state to the initial one. The correspondence between the outcome of the electron spin states of \(\hbox {NV}_1\), \(\hbox {NV}_2\), \(\hbox {NV}_3\) and the initial spatial-mode states of three-photon system is summarized in Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YY., Liang, LX. & Zhang, M. Self-assisted complete analysis of three-photon hyperentangled Greenberger–Horne–Zeilinger states with nitrogen-vacancy centers in microcavities. Quantum Inf Process 17, 172 (2018). https://doi.org/10.1007/s11128-018-1939-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1939-1

Keywords

Navigation