Skip to main content
Log in

Perfect joint remote state preparation of arbitrary six-qubit cluster-type states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a joint remote state preparation protocol, which is applicable to six-qubit cluster states, is presented. The scheme is performed with the help of three quantum channels constituted by eight qubits. A new index of efficiency for JRSP protocols is defined. A comparison is made with the existing similar schemes from which it is concluded that the present scheme utilizes its resources more efficiently. The work is a part of the line of research on transfer and remote preparation of entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Li, S.S.: Dense coding with cluster state via local measurements. Int. J. Theor. Phys. 51, 724–730 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, H.W., Yin, Z.Q., Wang, S., Bao, W.S., Guo, G.C., Han, Z.F.: Lower bound for the security of different phase shift quantum key distribution against a one-pulse-attack. Chin. Phys. B 20, 100306 (2011)

    Article  ADS  Google Scholar 

  4. Yang, Y.G., Wen, Q.Y., Zhu, F.C.: An efficient two-step quantum key distribution protocol with orthogonal product states. Chin. Phys. B 16, 910–914 (2007)

    Article  Google Scholar 

  5. Zhu, J., He, G.Q., Zeng, G.H.: Security analysis of continuous-variable quantum key distribution scheme. Chin. Phys. B 16, 1364–1369 (2007)

    Article  Google Scholar 

  6. Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65, 042320 (2002)

    Article  ADS  Google Scholar 

  7. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  10. Gao, T., Yan, F.L., Wang, Z.X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. B 14(5), 893–897 (2005)

    Article  Google Scholar 

  11. Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state. Int. J. Theor. Phys. 52, 1630–1634 (2013)

    Article  MathSciNet  Google Scholar 

  12. Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341(1), 55–59 (2005)

    Article  ADS  MATH  Google Scholar 

  13. Zhang, Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352(1), 55–58 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Choudhury, S.B., Dhara, A.: A bidirectional teleportation protocol for arbitrary two-qubit state under the supervision of a third party. Int. J. Theor. Phys. 55, 2275–2285 (2016)

    Article  MATH  Google Scholar 

  15. Agrawal, P., Pati, A.K.: Probabilistic quantum teleportation. Phys. Lett. A 305, 12–17 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014). https://doi.org/10.1007/s10773-014-2065-1

    Article  MATH  Google Scholar 

  17. Yu, L.Z., Wu, T.: Probabilistic teleportation of three-qubit entangled state via five-qubit cluster state. Int. J. Theor. Phys. 52(5), 1461–1465 (2013)

    Article  MathSciNet  Google Scholar 

  18. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)

    Article  ADS  Google Scholar 

  19. Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014)

    Article  MATH  Google Scholar 

  20. Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)

    Article  MathSciNet  Google Scholar 

  21. Lo, H.K.: Classical-communication cost in distributed quantum-information processing. A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  22. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  23. Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  24. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  25. Hayashi, A., Hashimoto, T., Horibe, M.: Remote state preparation without oblivious conditions. Phys. Rev. A 67, 052302 (2003)

    Article  ADS  Google Scholar 

  26. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  27. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  28. Wang, D., Ye, L.: Probabilistic joint remote preparation of four-cubit cluster-type states with quaternate partially entangled channels. Int. J. Theor. Phys. 51(11), 3376–3386 (2012)

    Article  ADS  MATH  Google Scholar 

  29. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B-At. Mol. Opt. 40(18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  30. Liu, W.J., Chen, Z.F., Liu, C., Zheng, Y.: Improved deterministic N-to-one joint remote preparation of an arbitrary qubit via EPR pairs. Int. J. Theor. Phys. 54(2), 472–483 (2015)

    Article  MATH  Google Scholar 

  31. An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B-At. Mol. Opt. 42(12), 125501 (2009)

    Article  ADS  Google Scholar 

  32. Wang, D., Zha, X.W., Lan, Q.: Joint remote state preparation of arbitrary two-qubit state with six-qubit state. Opt. Commun. 284(24), 5853–5855 (2011)

    Article  ADS  Google Scholar 

  33. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary threequbit state. Opt. Commun. 283(23), 4796–4801 (2010)

    Article  ADS  Google Scholar 

  34. Xiao, X.Q., Liu, J.M., Zeng, G.: Joint remote state preparation of arbitrary two-and three-qubit states. J. Phys. B-At. Mol. Opt. 44(7), 075501 (2011)

    Article  ADS  Google Scholar 

  35. Wang, D., Ye, L.: Joint remote preparation of a class of four-qubit cluster-like states with tripartite entanglements and positive operator-valued measurements. Int. J. Theor. Phys. 52(9), 3075–3085 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373–379 (2015). https://doi.org/10.1007/s11128-014-0835-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B 41, 095501 (2008)

    Article  ADS  Google Scholar 

  38. Zhan, Y.-B., Hu, B.-L., Ma, P.-C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B 44, 095501 (2011)

    Article  ADS  Google Scholar 

  39. Hou, K., Li, Y.-B., Liu, G.-H., Sheng, S.-Q.: Joint remote preparation of an arbitrary two-qubit state via GHZ-type states. J. Phys. A 44, 255304 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Xia, Y., Chen, Q.-Q., An, N.B.: Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein–Podolsky–Rosen pairs with a passive receiver. J. Phys. A 45, 335306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhan, Y.-B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two and three-qubit entangled states. Quantum Inf. Process. 12, 997–1009 (2013). https://doi.org/10.1007/s11128-012-0441-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Li, X., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14, 4585–4592 (2015). https://doi.org/10.1007/s11128-015-1141-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Wang, M.-M., Qu, Z.-G., Wang, W., Chen, J.-G.: Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. Quantum Inf. Process. 16, 140 (2017). https://doi.org/10.1007/s11128-017-1594-y

    Article  ADS  MATH  Google Scholar 

  44. Hou, K.: Joint remote preparation of four-qubit cluster-type states with multiparty. Quantum Inf. Process. 12, 3821–3833 (2013). https://doi.org/10.1007/s11128-013-0637-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Li, W., Chen, H., Liu, Z.: Deterministic joint remote preparation of arbitrary four-qubit cluster-type state using EPR pairs. Int. J. Theor. Phys. 56, 351–361 (2017). https://doi.org/10.1007/s10773-016-3174-9

    Article  MATH  Google Scholar 

  46. Shi, R., Huang, L., Yang, W.: Multi-party quantum state sharing of an arbitrary twoqubit state with Bell-states. Quantum Inf. Process. 10, 231–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, H.B., Zhou, X.Y., An, X.X., Cui, M.-M., Fu, D.S.: Deterministic joint remote preparation of a four-qubit cluster-type state via GHZ states. Int. J. Theor. Phys. 55(8), 3588–3596 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, K., Yu, X.-T., Lu, S.-L., Gong, Y.-X.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 89, 022329 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Grants Commission of India. The valuable suggestions of the reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Samanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, B.S., Samanta, S. Perfect joint remote state preparation of arbitrary six-qubit cluster-type states. Quantum Inf Process 17, 175 (2018). https://doi.org/10.1007/s11128-018-1943-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1943-5

Keywords

Navigation