Abstract
Recently, we reported an experimental implementation of quantum information processing (QIP) by nuclear quadrupole resonance (NQR). In this work, we present the first quantum state tomography (QST) experimental implementation in the NQR QIP context. Two approaches are proposed, employing coherence selection by temporal and spatial averaging. Conditions for reduction in the number of cycling steps are analyzed, which can be helpful for larger spin systems. The QST method was applied to the study of spin coherent states, where the alignment-to-orientation phenomenon and the evolution of squeezed spin states show the effect of the nonlinear quadrupole interaction intrinsic to the NQR system. The quantum operations were implemented using a single-crystal sample of KClO\(_{3}\) and observing \(^{35}\)Cl nuclei, which posses spin 3/2.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
In this paper we use spin angular momentum notation I, since their atomic counterpart satisfy the same mathematical properties.
References
Agarwal, G.S.: Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions. Phys. Rev. A 24, 2889–2896 (1981). https://doi.org/10.1103/PhysRevA.24.2889
Alnis, J., Auzinsh, M.: Angular-momentum spatial distribution symmetry breaking in Rb by an external magnetic field. Phys. Rev. A 63, 023,407 (2001). https://doi.org/10.1103/PhysRevA.63.023407
Amiet, J.P., Weigert, S.: Reconstructing a pure state of a spin \(s\) through three Stern–Gerlach measurements. J. Phys. A Math. Gen. 32(15), 2777–2784 (1999). https://doi.org/10.1088/0305-4470/32/15/006
Araujo-Ferreira, A.G., Brasil, C.A., Soares-Pinto, D.O., Deazevedo, E.R., Bonagamba, T.J., Teles, J.: Quantum state tomography and quantum logical operations in a three qubits NMR quadrupolar system. Int. J. Quantum Inf. 10(02), 1250,016 (2012). https://doi.org/10.1142/s0219749912500165
Auccaise, R., Teles, J., Sarthour, R., Bonagamba, T., Oliveira, I., deAzevedo, E.: A study of the relaxation dynamics in a quadrupolar NMR system using quantum state tomography. J. Magn. Reson. 192(1), 17–26 (2008). https://doi.org/10.1016/j.jmr.2008.01.009. http://www.sciencedirect.com/science/article/B6WJX-4RPTJ8M-1/2/a2ff51926c5e3feb296e0b09c8f3bbfe
Auccaise, R., Araujo-Ferreira, A.G., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., Roditi, I.: Spin squeezing in a quadrupolar nuclei NMR system. Phys. Rev. Lett. 114, 043,604 (2015). https://doi.org/10.1103/PhysRevLett.114.043604
Auzinsh, M.P., Ferber, R.S.: J-selective stark orientation of molecular rotation in a beam. Phys. Rev. Lett. 69, 3463–3466 (1992). https://doi.org/10.1103/PhysRevLett.69.3463
Auzinsh, M., Blushs, K., Ferber, R., Gahbauer, F., Jarmola, A., Tamanis, M.: Electric-field-induced symmetry breaking of angular momentum distribution in atoms. Phys. Rev. Lett. 97, 043,002 (2006). https://doi.org/10.1103/PhysRevLett.97.043002
Auzinsh, M., Budker, D., Rochester, S.M.: Optically Polarized Atoms, 1st edn. Oxford University Press, Oxford (2010)
Auzinsh, M., Berzins, A., Ferber, R., Gahbauer, F., Kalvans, L., Mozers, A., Spiss, A.: Alignment-to-orientation conversion in a magnetic field at nonlinear excitation of the \({D}_{2}\) line of rubidium: experiment and theory. Phys. Rev. A 91, 053,418 (2015). https://doi.org/10.1103/PhysRevA.91.053418
Bain, A.D.: Coherence levels and coherence pathways in NMR. A simple way to design phase cycling procedures. J. Mag. Reson. (1969) 56(3), 418–427 (1984). https://doi.org/10.1016/0022-2364(84)90305-6
Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E., White, T.C., Mutus, J., Fowler, A.G., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Neill, C., O’Malley, P., Roushan, P., Vainsencher, A., Wenner, J., Korotkov, A.N., Cleland, A.N., Martinis, J.M.: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508(7497), 500–503 (2014). https://doi.org/10.1038/nature13171
Bax, A., Jong, P.D., Mehlkopf, A., Smidt, J.: Separation of the different orders of NMR multiple-quantum transitions by the use of pulsed field gradients. Chem. Phys. Lett. 69(3), 567–570 (1980)
Benedict, M.G., Czirják, A.: Wigner functions, squeezing properties, and slow decoherence of a mesoscopic superposition of two-level atoms. Phys. Rev. A 60, 4034–4044 (1999). https://doi.org/10.1103/PhysRevA.60.4034
Bonk, F.A., Sarthour, R.S., deAzevedo, E.R., Bulnes, J.D., Mantovani, G.L., Freitas, J.C.C., Bonagamba, T.J., Guimarães, A.P., Oliveira, I.S.: Quantum-state tomography for quadrupole nuclei and its application on a two-qubit system. Phys. Rev. A 69(4), 042,322 (2004). https://doi.org/10.1103/PhysRevA.69.042322
Budker, D., Kimball, D., Rochester, S., Urban, J.: Alignment-to-orientation conversion and nuclear quadrupole resonance. Chem. Phys. Lett. 378(34), 440–448 (2003). https://doi.org/10.1016/S0009-2614(03)01327-7. http://www.sciencedirect.com/science/article/pii/S0009261403013277
Budker, D., Kimball, D.F., Rochester, S.M., Yashchuk, V.V.: Nonlinear magneto-optical rotation via alignment-to-orientation conversion. Phys. Rev. Lett. 85, 2088–2091 (2000). https://doi.org/10.1103/PhysRevLett.85.2088
Bulutay, C.: Cat-state generation and stabilization for a nuclear spin through electric quadrupole interaction. Phys. Rev. A (2017). https://doi.org/10.1103/physreva.96.012312
Childs, A.M., Chuang, I.L., Leung, D.W.: Realization of quantum process tomography in NMR. Phys. Rev. A (2001). https://doi.org/10.1103/physreva.64.012314
Chuang, I.L., Gershenfeld, N., Kubinec, M.G., Leung, D.W.: Bulk quantum computation with nuclear magnetic resonance: theory and experiment. Proc. R. Soc. A Math. Phys. Eng. Sci. 454(1969), 447–467 (1998). https://doi.org/10.1098/rspa.1998.0170
Cory, D.G., Fahmy, A.F., Havel, T.F.: Ensemble quantum computing by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America 94(5), 1634–1639 (1997). https://doi.org/10.1073/pnas.94.5.1634. http://www.pnas.org/cgi/content/abstract/94/5/1634
Cory, D.G., Price, M.D., Havel, T.F.: Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing. Phys. D Nonlinear Phenom. 120(1–2), 82–101 (1998). https://doi.org/10.1016/s0167-2789(98)00046-3
da Silva, M.P., Landon-Cardinal, O., Poulin, D.: Practical characterization of quantum devices without tomography. Phys. Rev. Lett (2011). https://doi.org/10.1103/physrevlett.107.210404
Das, R., Kumar, A.: Use of quadrupolar nuclei for quantum-information processing by nuclear magnetic resonance: implementation of a quantum algorithm. Phys. Rev. A 68(3), 032,304 (2003). https://doi.org/10.1103/PhysRevA.68.032304
Estrada, R.A., deAzevedo, E.R., Duzzioni, E.I., Bonagamba, T.J., Moussa, M.H.Y.: Spin coherent states in NMR quadrupolar system: experimental and theoretical applications. Eur. Phys. J. D 67(6), 127 (2013). https://doi.org/10.1140/epjd/e2013-30689-1
Fano, U., Macek, J.H.: Impact excitation and polarization of the emitted light. Rev. Mod. Phys. 45, 553–573 (1973). https://doi.org/10.1103/RevModPhys.45.553
Fortunato, E.M., Pravia, M.A., Boulant, N., Teklemariam, G., Havel, T.F., Cory, D.G.: Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing. J. Chem. Phys. 116(17), 7599–7606 (2002)
Fraval, E., Sellars, M.J., Longdell, J.J.: Dynamic decoherence control of a solid-state nuclear-quadrupole qubit. Phys. Rev. Lett. (2005). https://doi.org/10.1103/physrevlett.95.030506
Furman, G.B., Goren, S.D., Meerovich, V.M., Sokolovsky, V.L.: Two qubits in pure nuclear quadrupole resonance. J. Phys. Condens. Matter 14(37), 8715 (2002). http://stacks.iop.org/0953-8984/14/i=37/a=308
Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Single-spin entanglement. Quantum Inf. Process. 16(9), 206 (2017). https://doi.org/10.1007/s11128-017-1655-2
Gross, D., Liu, Y.K., Flammia, S.T., Becker, S., Eisert, J.: Quantum state tomography via compressed sensing. Phys. Rev. Lett. (2010). https://doi.org/10.1103/physrevlett.105.150401
Hilborn, R.C., Hunter, L.R., Johnson, K., Peck, S.K., Spencer, A., Watson, J.: Atomic barium and cesium alignment-to-orientation conversion in external electric and magnetic fields. Phys. Rev. A 50, 2467–2474 (1994). https://doi.org/10.1103/PhysRevA.50.2467
Home, J.P., Hanneke, D., Jost, J.D., Amini, J.M., Leibfried, D., Wineland, D.J.: Complete methods set for scalable ion trap quantum information processing. Science 325(5945), 1227–1230 (2009). https://doi.org/10.1126/science.1177077
Howard, M., Twamley, J., Wittmann, C., Gaebel, T., Jelezko, F., Wrachtrup, J.: Quantum process tomography and Linblad estimation of a solid-state qubit. New J. Phys. 8(3), 33–33 (2006). https://doi.org/10.1088/1367-2630/8/3/033
Jin, G.R., Kim, S.W.: Spin squeezing and maximal-squeezing time. Phys. Rev. A 76(4), 043,621 (2007). https://doi.org/10.1103/PhysRevA.76.043621
Jin, G.R., Kim, S.W.: Storage of spin squeezing in a two-component Bose–Einstein condensate. Phys. Rev. Lett. 99(17), 170,405 (2007). https://doi.org/10.1103/PhysRevLett.99.170405
Kampermann, H., Veeman, W.S.: Quantum computing using quadrupolar spins in solid state N M R. Quantum Inf. Proces. 1(5), 327–344 (2002)
Knill, E., Laflamme, R., Martinez, R., Negrevergne, C.: Benchmarking quantum computers: the five-qubit error correcting code. Phys. Rev. Lett. 86(25), 5811–5814 (2001). https://doi.org/10.1103/physrevlett.86.5811
Kuntz, M.C., Hilborn, R.C., Spencer, A.M.: Dynamic stark shift and alignment-to-orientation conversion. Phys. Rev. A 65, 023,411 (2002). https://doi.org/10.1103/PhysRevA.65.023411
Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242(5394), 190–191 (1973)
Law, C.K., Ng, H.T., Leung, P.T.: Coherent control of spin squeezing. Phys. Rev. A 63(5), 055,601 (2001). https://doi.org/10.1103/PhysRevA.63.055601
Leonhardt, U.: Quantum-state tomography and discrete Wigner function. Phys. Rev. Lett. 76(22), 4293–4293 (1996). https://doi.org/10.1103/physrevlett.76.4293
Leskowitz, G.M., Ghaderi, N., Olsen, R.A., Mueller, L.J.: Three-qubit nuclear magnetic resonance quantum information processing with a single-crystal solid. J. Chem. Phys. 119(3), 1643–1649 (2003). https://doi.org/10.1063/1.1582171
Li, K., Zhang, J., Cong, S.: Fast reconstruction of high-qubit-number quantum states via low-rate measurements. Phys. Rev. A (2017). https://doi.org/10.1103/physreva.96.012334
Liu, Y.X, Wei, L.F., Nori, F.: Tomographic measurements on superconducting qubit states. Phys. Rev. B (2005). https://doi.org/10.1103/physrevb.72.014547
Mallet, F., Castellanos-Beltran, M.A., Ku, H.S., Glancy, S., Knill, E., Irwin, K.D., Hilton, G.C., Vale, L.R., Lehnert, K.W.: Quantum state tomography of an itinerant squeezed microwave field. Phys. Rev. Lett. (2011). https://doi.org/10.1103/physrevlett.106.220502
Mansfield, P., Grannell, P.K.: NMR ’diffraction’ in solids? J. Phys. C Solid State Phys. 6(22), L422–L426 (1973)
Miranowicz, A., zdemir, Ş.K., Bajer, J., Yusa, G., Imoto, N., Hirayama, Y., Nori, F.: Quantum state tomography of large nuclear spins in a semiconductor quantum well: Optimal robustness against errors as quantified by condition numbers. Phys. Rev. B (2015). https://doi.org/10.1103/physrevb.92.075312
Myrskog, S.H., Fox, J.K., Mitchell, M.W., Steinberg, A.M.: Quantum process tomography on vibrational states of atoms in an optical lattice. Phys. Rev. A (2005). https://doi.org/10.1103/physreva.72.013615
Ofek, N., Petrenko, A., Heeres, R., Reinhold, P., Leghtas, Z., Vlastakis, B., Liu, Y., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536(7617), 441–445 (2016). https://doi.org/10.1038/nature18949
Oren, D., Mutzafi, M., Eldar, Y.C., Segev, M.: Quantum state tomography with a single measurement setup. Optica 4(8), 993 (2017). https://doi.org/10.1364/optica.4.000993
Possa, D., Gaudio, A.C., Freitas, J.C.: Numerical simulation of NQR/NMR: Applications in quantum computing. J. Mag. Reson. 209(2), 250–260 (2011). https://doi.org/10.1016/j.jmr.2011.01.020. http://www.sciencedirect.com/science/article/pii/S109078071100036X
Price, W.S.: Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part 1. Basic theory. Concepts Mag. Reson. 9(5), 299–336 (1997)
Raymer, M.G.: Measuring the quantum mechanical wave function. Contemp. Phys. 38(5), 343–355 (1997). https://doi.org/10.1080/001075197182315
Redfield, A.G.: On the theory of relaxation processes. IBM J. Res. Dev. 1(1), 19–31 (1957). https://doi.org/10.1147/rd.11.0019
Riebe, M., Kim, K., Schindler, P., Monz, T., Schmidt, P.O., Krber, T.K., Hnsel, W., Hffner, H., Roos, C.F., Blatt, R.: Process tomography of ion trap quantum gates. Phys. Rev. Lett. (2006). https://doi.org/10.1103/physrevlett.97.220407
Rochester, S.M., Ledbetter, M.P., Zigdon, T., Wilson-Gordon, A.D., Budker, D.: Orientation-to-alignment conversion and spin squeezing. Phys. Rev. A 85, 022,125 (2012). https://doi.org/10.1103/PhysRevA.85.022125
Sánchez-Soto, L.L., Klimov, A.B., de la Hoz, P., Leuchs, G.: Quantum versus classical polarization states: when multipoles count. J. Phys. B Atomic, Mol. Opt. Phys. 46(10), 104,011 (2013). http://stacks.iop.org/0953-4075/46/i=10/a=104011
Santagati, R., Silverstone, J.W., Strain, M., Sorel, M., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M., Natarajan, C., Hadfield, R.H., Brien, J.O., Thompson, M.: Silicon photonic processor of two-qubit entangling quantum logic. J. Opt. (2017). https://doi.org/10.1088/2040-8986/aa8d56
Sarthour, R.S., deAzevedo, E.R., Bonk, F.A., Vidoto, E.L.G., Bonagamba, T.J., Guimarães, A.P., Freitas, J.C.C., Oliveira, I.S.: Relaxation of coherent states in a two-qubit NMR quadrupole system. Phys. Rev. A 68(2), 022,311 (2003). https://doi.org/10.1103/PhysRevA.68.022311
Schindler, P., Barreiro, J.T., Monz, T., Nebendahl, V., Nigg, D., Chwalla, M., Hennrich, M., Blatt, R.: Experimental repetitive quantum error correction. Science 332(6033), 1059–1061 (2011). https://doi.org/10.1126/science.1203329
Teles, J., deAzevedo, E.R., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J.: Quantum state tomography for quadrupolar nuclei using global rotations of the spin system. J. Chem. Phys. 126(15), 154506 (2007). https://doi.org/10.1063/1.2717179. http://link.aip.org/link/?JCP/126/154506/1
Teles, J., Rivera-Ascona, C., Polli, R.S., Oliveira-Silva, R., Vidoto, E.L.G., Andreeta, J.P., Bonagamba, T.J.: Experimental implementation of quantum information processing by Zeeman-perturbed nuclear quadrupole resonance. Quantum Inf. Proces. 14(6), 1889–1906 (2015). https://doi.org/10.1007/s11128-015-0967-3
Varshalovich, D.: Quantum Theory Of Angular Momemtum. World Scientific, Singapore (1988)
Weber, M.J.: Nuclear quadrupole spin-lattice relaxation in solids. J. Phys. Chem. Solids 17(3–4), 267–277 (2015). https://doi.org/10.1016/0022-3697(61)90192-5
Yamamoto, T., Neeley, M., Lucero, E., Bialczak, R.C., Kelly, J., Lenander, M., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Cleland, A.N., Martinis, J.M.: Quantum process tomography of two-qubit controlled-z and controlled-NOT gates using superconducting phase qubits. Phys. Rev. B 82(18), (2010). https://doi.org/10.1103/physrevb.82.184515
Zhang, J., Laflamme, R., Suter, D.: Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code. Phys. Rev. Lett. (2012). https://doi.org/10.1103/physrevlett.109.100503
Acknowledgements
This work was supported by the Brazilian agency FAPESP (2012/02208-5) and by the Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ). The authors also acknowledge Edson Luiz Gea Vidoto and Aparecido Donizeti Fernandes de Amorim by the technical support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Teles, J., Auccaise, R., Rivera-Ascona, C. et al. Spin coherent states phenomena probed by quantum state tomography in Zeeman perturbed nuclear quadrupole resonance. Quantum Inf Process 17, 177 (2018). https://doi.org/10.1007/s11128-018-1947-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1947-1