Skip to main content
Log in

Free and bound entanglement dynamics in qutrit systems under Markov and non-Markov classical noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate in detail the dynamics of decoherence, free and bound entanglements, and the conversion from one to another (quantum state transitions), in a two non-interacting qutrits system initially entangled and subject to independents or a common classical noise. Both Markovian and non-Markovian environments are considered. Furthermore, isotropic and bound entangled states for qutrits systems are considered as initial states. We show the efficiency of the formers over the latters against decoherence, and in preserving quantum entanglement. The loss of coherence increases monotonically with time up to a saturation value depending upon the initial state parameter and is stronger in a collective Markov environment. For the non-Markov regime the presence or absence of entanglement revival and entanglement sudden death phenomena is deduced depending on both the peculiar characteristics of the noise, the physical setup and the initial state of the system. We demonstrate distillability sudden death for conveniently selected parameters in bound entangled states; meanwhile, it is completely absent for isotropic states, where entanglement sudden death is avoided for dynamic noise independently of the noise regime and the physical setup. Our results indicate that distillability sudden death under the Markov/non-Markov noise considered can be avoided depending upon the physical setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247–255 (2000)

    Article  ADS  MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  Google Scholar 

  6. Richter, T., Vogel, W.: Nonclassical characteristic functions for highly sensitive measurements. Phys. Rev. A 76, 053835 (2007)

    Article  ADS  Google Scholar 

  7. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)

    Article  ADS  Google Scholar 

  8. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    Article  ADS  Google Scholar 

  9. Chekhova, M., Kulik, S., Chekhova, M., Kulik, S.: Physical Foundations of Quantum Electronics by David Klyshko. World Scientific Publishing Company, Singapore (2011)

    Book  Google Scholar 

  10. Moreva, E., et al.: Time from quantum entanglement: an experimental illustration. Phys. Rev. A 89, 052122 (2014)

    Article  ADS  Google Scholar 

  11. Grassani, D., et al.: Micrometer-scale integrated silicon source of time-energy entangled photons. Optica 2, 88–94 (2015)

    Article  Google Scholar 

  12. Marzolino, U.: Entanglement in dissipative dynamics of identical particles. EPL Europhys. Lett. 104, 40004 (2013)

    Article  ADS  Google Scholar 

  13. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Lucamarini, M., Paganelli, S., Mancini, S.: Two-qubit entanglement dynamics in a symmetry-broken environment. Phys. Rev. A 69, 062308 (2004)

    Article  ADS  Google Scholar 

  15. Hutton, A., Bose, S.: Mediated entanglement and correlations in a star network of interacting spins. Phys. Rev. A 69, 042312 (2004)

    Article  ADS  Google Scholar 

  16. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  17. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Roszak, K., Machnikowski, P.: Complete disentanglement by partial pure dephasing. Phys. Rev. A 73, 022313 (2006)

    Article  ADS  Google Scholar 

  19. Derkacz, L., Jakóbczyk, L.: Quantum interference and evolution of entanglement in a system of three-level atoms. Phys. Rev. A 74, 032313 (2006)

    Article  ADS  Google Scholar 

  20. Yuan, X.-Z., Goan, H.-S., Zhu, K.-D.: Non-Markovian reduced dynamics and entanglement evolution of two coupled spins in a quantum spin environment. Phys. Rev. B 75, 045331 (2007)

    Article  ADS  Google Scholar 

  21. Hernandez, M., Orszag, M.: Decoherence and disentanglement for two qubits in a common squeezed reservoir. Phys. Rev. A 78, 042114 (2008)

    Article  ADS  Google Scholar 

  22. Yu, T., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393–397 (2006)

    Article  ADS  Google Scholar 

  23. Franco, R.L., Bellomo, B., Andersson, E., Compagno, G.: Revival of quantum correlations without system-environment back-action. Phys. Rev. A 85, 032318 (2012)

    Article  ADS  Google Scholar 

  24. Xu, J.-S., et al.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

    Article  Google Scholar 

  25. López, C.E.: Sudden birth versus sudden death of entanglement in multipartite systems. Phys. Rev. Lett. 101, 080503 (2008)

    Article  Google Scholar 

  26. Mazzola, L.: Sudden death and sudden birth of entanglement in common structured reservoirs. Phys. Rev. A 79, 042302 (2009)

    Article  ADS  Google Scholar 

  27. Hu, J.: Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A 91, 012327 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  29. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011)

    Article  ADS  Google Scholar 

  30. Ciccarello, F., Giovannetti, V.: Creating quantum correlations through local nonunitary memoryless channels. Phys. Rev. A 85, 010102 (2012)

    Article  ADS  Google Scholar 

  31. Kuznetsova, E.I., Zenchuk, A.I.: Quantum discord versus second-order MQ NMR coherence intensity in dimers. Phys. Lett. A 376, 1029–1034 (2012)

    Article  ADS  MATH  Google Scholar 

  32. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Effects of classical environmental noise on entanglement and quantum discord dynamics. Int. J. Quantum Inf. 10, 1241005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Dynamics of quantum correlations in colored-noise environments. Phys. Rev. A 87, 052328 (2013)

    Article  ADS  Google Scholar 

  34. Javed, M., Khan, S., Ullah, S.A.: The dynamics of quantum correlations in mixed classical environments. J. Russ. Laser Res. 37, 562–571 (2016)

    Article  Google Scholar 

  35. Kaszlikowski, D., Gnaciński, P., Żukowski, M., Miklaszewski, W., Zeilinger, A.: Violations of local realism by two entangled \(N\)-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418–4421 (2000)

    Article  ADS  Google Scholar 

  36. Chen, J.-L., Kaszlikowski, D., Kwek, L.C., Oh, C.H., Żukowski, M.: Entangled three-state systems violate local realism more strongly than qubits: an analytical proof. Phys. Rev. A 64, 052109 (2001)

    Article  ADS  Google Scholar 

  37. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Walborn, S.P., Lemelle, D.S., Almeida, M.P., Ribeiro, P.H.S.: Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)

    Article  ADS  Google Scholar 

  39. Wang, S., Lu, Y., Long, G.-L.: Entanglement classification of \(222d\) quantum systems via the ranks of the multiple coefficient matrices. Phys. Rev. A 87, 062305 (2013)

    Article  ADS  Google Scholar 

  40. Bourennane, M., Karlsson, A., Björk, G.: Quantum key distribution using multilevel encoding. Phys. Rev. A 64, 012306 (2001)

    Article  ADS  Google Scholar 

  41. Da-Sheng, D., et al.: Class of unlockable bound entangled states and their applications. Chin. Phys. Lett. 25, 2366–2369 (2008)

    Article  ADS  Google Scholar 

  42. Horodecki, P., Horodecki, M., Horodecki, R.: Bound entanglement can be activated. Phys. Rev. Lett. 82, 1056–1059 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Ali, M.: Distillability sudden death in qutrit-qutrit systems under global and multilocal dephasing. Phys. Rev. A 81, 042303 (2010)

    Article  ADS  Google Scholar 

  44. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using \(d\)-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  45. Durt, T., Cerf, N.J., Gisin, N., Żukowski, M.: Security of quantum key distribution with entangled qutrits. Phys. Rev. A 67, 012311 (2003)

    Article  ADS  Google Scholar 

  46. Jafarpour, M.: An entanglement study of superposition of qutrit spin-coherent states. J. Sci. Islam. Repub. Iran 22, 165–169 (2011)

    Google Scholar 

  47. Jafarpour, M., Ashrafpour, M.: Entanglement dynamics of a two-qutrit system under DM interaction and the relevance of the initial state. Quantum Inf. Process. 12, 761–772 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Doustimotlagh, N., Guo, J.-L., Wang, S.: Quantum correlations in qutrit-qutrit systems under local quantum noise channels. Int. J. Theor. Phys. 54, 1784–1797 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, Y., Wang, A.-M.: Quantum discord for a qutrit-qutrit system under depolarizing and dephasing noise. Chin. Phys. Lett. 30, 080302 (2013)

    Article  ADS  Google Scholar 

  50. Jaeger, G., Ann, K.: Disentanglement and decoherence in a pair of qutrits under dephasing noise. J. Mod. Opt. 54, 2327–2338 (2007)

    Article  ADS  Google Scholar 

  51. Ali, M.: Distillability sudden death in qutrit-qutrit systems under amplitude damping. J. Phys. B At. Mol. Opt. Phys. 43, 045504 (2010)

    Article  ADS  Google Scholar 

  52. Tsokeng, A.T., Tchoffo, M., Fai, L.C.: Quantum correlations and decoherence dynamics for a qutrit-qutrit system under random telegraph noise. Quantum Inf. Process. 16, 191 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Arthur, T.T., Martin, T., Fai, L.C.: Quantum correlations and coherence dynamics in qutrit–qutrit systems under mixed classical environmental noises. Int. J. Quantum Inf. 15(06), 1750047 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Arthur, T.T., Martin, T., Fai, L.C.: Disentanglement and quantum states transitions dynamics in spin-qutrit systems: dephasing random telegraph noise and the relevance of the initial state. Quantum Inf. Process. 17(2), 37 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  55. Tsokeng, A.T., Tchoffo, M., Fai, L.C.: Dynamics of entanglement and quantum states transitions in spin-qutrit systems under classical dephasing and the relevance of the initial state. J. Phys. Commun. 2(3), 035031 (2018)

    Article  Google Scholar 

  56. Li, X.-J., Ji, H.-H., Hou, X.-W.: Thermal discord and negativity in a two-spin-qutrit system under different magnetic fields. Int. J. Quantum Inf. 11, 1350070 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Jafarpour, M., Naderi, N.: Qutrit teleportation under intrinsic decoherence. Int. J. Quantum Inf. 14, 1650028 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: Is there a bound entanglement in nature? Phys. Rev. Lett. 80, 5239–5242 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Smolin, J.A.: Four-party unlockable bound entangled state. Phys. Rev. A 63, 032306 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  61. Acín, A., Cirac, J.I., Masanes, L.: Multipartite bound information exists and can be activated. Phys. Rev. Lett. 92, 107903 (2004)

    Article  ADS  Google Scholar 

  62. Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Superactivation of bound entanglement. Phys. Rev. Lett. 90, 107901 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Murao, M., Vedral, V.: Remote information concentration using a bound entangled state. Phys. Rev. Lett. 86, 352–355 (2001)

    Article  ADS  Google Scholar 

  64. Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J.: Secure key from bound entanglement. Phys. Rev. Lett. 94, 160502 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Ishizaka, S.: Bound entanglement provides convertibility of pure entangled states. Phys. Rev. Lett. 93, 190501 (2004)

    Article  ADS  Google Scholar 

  66. Yang, D., Horodecki, M., Horodecki, R., Synak-Radtke, B.: Irreversibility for all bound entangled states. Phys. Rev. Lett. 95, 190501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  67. Tóth, G., Knapp, C., Gühne, O., Briegel, H.J.: Optimal spin squeezing inequalities detect bound entanglement in spin models. Phys. Rev. Lett. 99, 250405 (2007)

    Article  ADS  Google Scholar 

  68. Cavalcanti, D., Ferraro, A., Garca-Saez, A., Acn, A.: Distillable entanglement and area laws in spin and harmonic-oscillator systems. Phys. Rev. A 78, 012335 (2008)

    Article  ADS  Google Scholar 

  69. Song, W., Chen, L., Zhu, S.-L.: Sudden death of distillability in qutrit–qutrit systems. Phys. Rev. A 80, 012331 (2009)

    Article  ADS  Google Scholar 

  70. Bordone, P., Buscemi, F., Benedetti, C.: Effects of Markov an non-Markov classical noise on entanglement dynamics. Fluct. Noise Lett. 11, 1242003 (2012)

    Article  Google Scholar 

  71. Lahini, Y., Bromberg, Y., Christodoulides, D.N., Silberberg, Y.: Quantum correlations in two-particle anderson localization. Phys. Rev. Lett. 105, 163905 (2010)

    Article  ADS  Google Scholar 

  72. Thompson, C., Vemuri, G., Agarwal, G.S.: Anderson localization with second quantized fields in a coupled array of waveguides. Phys. Rev. A 82, 053805 (2010)

    Article  ADS  Google Scholar 

  73. Falci, G., D’arrigo, A., Mastellone, A., Paladino, E.: Initial decoherence in solid state qubits. Phys. Rev. Lett. 94, 167002 (2005)

    Article  ADS  Google Scholar 

  74. Paladino, E., Faoro, L., Falci, G., Fazio, R.: Decoherence and \(1/f\) noise in josephson qubits. Phys. Rev. Lett. 88, 228304 (2002)

    Article  ADS  Google Scholar 

  75. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  76. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Rudolph, O.: Further results on the cross norm criterion for separability. Quantum Inf. Process. 4, 219–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  79. Chen, K., Wu, L.-A.: A matrix realignment method for recognizing entanglement. arXiv:quant-ph/0205017 (2002)

  80. Benedetti, C., Buscemi, F., Bordone, P.: Quantum correlations in continuous-time quantum walks of two indistinguishable particles. Phys. Rev. A 85, 042314 (2012)

    Article  ADS  Google Scholar 

  81. Krivitskii, L.A., Kulik, S.P., Penin, A.N., Chekhova, M.V.: Biphotons as three-level systems: transformation and measurement. J. Exp. Theor. Phys. 97(4), 846–857 (2003)

    Article  ADS  Google Scholar 

  82. Wang, Q., Zhang, Y.-S., Huang, Y.-F., Guo, G.-C.: Experimental demonstration of a simple method to engineer a single qutrit state with biphotons. Phys. Lett. A 344(1), 29–35 (2005)

    Article  ADS  Google Scholar 

  83. Oppenheim, A.V., Verghese, G.C.: Signals, Systems and Inference, p. 0133944212. Pearson Education, London (2015)

    Google Scholar 

  84. Clarisse, L. Entanglement Distillation; A Discourse on Bound Entanglement in Quantum Information Theory. arXiv:quant-ph/0612072 (2006)

  85. Bose, S., Vedral, V.: Mixedness and teleportation. Phys. Rev. A 61, 040101 (2000)

    Article  ADS  Google Scholar 

  86. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  87. Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A 87, 042310 (2013)

    Article  ADS  Google Scholar 

  88. Bergli, J., Galperin, Y.M., Altshuler, B.L.: Decoherence in qubits due to low-frequency noise. New J. Phys. 11, 025002 (2009)

    Article  ADS  Google Scholar 

  89. Derkacz, L., Jakóbczyk, L.: Dynamical creation of entanglement versus disentanglement in a system of three-level atoms with vacuum-induced coherences. Phys. Lett. A 372, 7117 (2008)

    Article  ADS  MATH  Google Scholar 

  90. Ficek, Z., Tanaś, R.: Delayed sudden birth of entanglement. Phys. Rev. A 77, 054301 (2008)

    Article  ADS  MATH  Google Scholar 

  91. Derkacz, L., Jakóbczyk, L.: Delayed birth of distillable entanglement in the evolution of bound entangled states. Phys. Rev. A 82, 022312 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Tchoffo.

Appendix: Explicit forms of the time-evolved states

Appendix: Explicit forms of the time-evolved states

We present the explicit forms of the various time-evolved states under the effects of the classical noise models considered, initially entangled in either state of Eqs. (5) and (6), and for both physical setups considered.

1.1 Static noise

1.1.1 Isotropic states

When the subsystems are initially entangled in isotropic states and subject to static noise, their density matrices from Eqs. (10) and (11) take the following form:

$$\begin{aligned}&\rho _{\text {de(ce)}}(p,t)\nonumber \\&\quad =\frac{1}{72}\left( \begin{array}{ccccccccc} \rho _{11}^{\text {de(ce)}} &{} \rho _{12}^{\text {de(ce)}} &{} \rho _{13}^{\text {de(ce)}} &{} \rho _{12}^{\text {de(ce)}} &{} \rho _{15}^{\text {de(ce)}} &{} \rho _{12}^{\text {de(ce)}} &{} \rho _{13}^{\text {de(ce)}} &{} \rho _{12}^{\text {de(ce)}} &{} \rho _{19}^{\text {de(ce)}}\\ -\rho _{12}^{\text {de(ce)}} &{} \rho _{22}^{\text {de(ce)}} &{} \rho _{23}^{\text {de(ce)}} &{} \rho _{24}^{\text {de(ce)}} &{} \rho _{25}^{\text {de(ce)}} &{} \rho _{24}^{\text {de(ce)}} &{} \rho _{23}^{\text {de(ce)}} &{} \rho _{24}^{\text {de(ce)}} &{} -\rho _{12}^{\text {de(ce)}}\\ \rho _{13}^{\text {de(ce)}} &{} -\rho _{23}^{\text {de(ce)}} &{} \rho _{33}^{\text {de(ce)}} &{} -\rho _{23}^{\text {de(ce)}} &{} \rho _{35}^{\text {de(ce)}} &{} -\rho _{23}^{\text {de(ce)}} &{} \rho _{37}^{\text {de(ce)}} &{} -\rho _{23}^{\text {de(ce)}} &{} \rho _{13}^{\text {de(ce)}}\\ -\rho _{12}^{\text {de(ce)}} &{} \rho _{24}^{\text {de(ce)}} &{} \rho _{23}^{\text {de(ce)}} &{} \rho _{22}^{\text {de(ce)}} &{} \rho _{25}^{\text {de(ce)}} &{} \rho _{24}^{\text {de(ce)}} &{} \rho _{23}^{\text {de(ce)}} &{} \rho _{24}^{\text {de(ce)}} &{} -\rho _{12}^{\text {de(ce)}}\\ \rho _{15}^{\text {de(ce)}} &{} -\rho _{25}^{\text {de(ce)}} &{} \rho _{35}^{\text {de(ce)}} &{} -\rho _{25}^{\text {de(ce)}} &{} \rho _{55}^{\text {de(ce)}} &{} -\rho _{25}^{\text {de(ce)}} &{} \rho _{35}^{\text {de(ce)}} &{} -\rho _{25}^{\text {de(ce)}} &{} \rho _{15}^{\text {de(ce)}}\\ -\rho _{12}^{\text {de(ce)}} &{} \rho _{24}^{\text {de(ce)}} &{} \rho _{23}^{\text {de(ce)}} &{} \rho _{24}^{\text {de(ce)}} &{} \rho _{25}^{\text {de(ce)}} &{} \rho _{22}^{\text {de(ce)}} &{} \rho _{23}^{\text {de(ce)}} &{} \rho _{24}^{\text {de(ce)}} &{} -\rho _{12}^{\text {de(ce)}}\\ \rho _{13}^{\text {de(ce)}} &{} -\rho _{23}^{\text {de(ce)}} &{} \rho _{37}^{\text {de(ce)}} &{} -\rho _{23}^{\text {de(ce)}} &{} \rho _{35}^{\text {de(ce)}} &{} -\rho _{23}^{\text {de(ce)}} &{} \rho _{33}^{\text {de(ce)}} &{} -\rho _{23}^{\text {de(ce)}} &{} \rho _{13}^{\text {de(ce)}}\\ -\rho _{12}^{\text {de(ce)}} &{} \rho _{24}^{\text {de(ce)}} &{} \rho _{23}^{\text {de(ce)}} &{} \rho _{24}^{\text {de(ce)}} &{} \rho _{25}^{\text {de(ce)}} &{} \rho _{24}^{\text {de(ce)}} &{} \rho _{23}^{\text {de(ce)}} &{} \rho _{22}^{\text {de(ce)}} &{} -\rho _{12}^{\text {de(ce)}}\\ \rho _{19}^{\text {de(ce)}} &{} \rho _{12}^{\text {de(ce)}} &{} \rho _{13}^{\text {de(ce)}} &{} \rho _{12}^{\text {de(ce)}} &{} \rho _{15}^{\text {de(ce)}} &{} \rho _{12}^{\text {de(ce)}} &{} \rho _{13}^{\text {de(ce)}} &{} \rho _{12}^{\text {de(ce)}} &{} \rho _{11}^{\text {de(ce)}} \end{array}\right) \nonumber \\ \end{aligned}$$
(15)

where

$$\begin{aligned} \rho _{11}^{\text {de(ce)}}= & {} \text {X}^{+};\quad \rho _{33}^{\text {de(ce)}}=\text {X}^{-}\quad \text {with}\quad \text {X}^{\pm }=8+p\left( 1\pm 12\alpha _{\text {de(ce)}}+3\xi _{\text {de(ce)}}\right) \\ \rho _{12}^{\text {de(ce)}}= & {} -\text {Y}^{+};\quad \rho _{23}^{\text {de(ce)}}=\text {Y}^{-}\quad \text {with}\quad \text {Y}^{\pm }=6ip\sqrt{2}\left( \Omega _{\text {de(ce)}}C_{2}(t)\pm \Pi _{\text {de(ce)}}\right) S_{2}(t)\\ \rho _{13}^{\text {de(ce)}}= & {} -\rho _{24}^{\text {de(ce)}}=3p\left( -1+\xi _{\text {de(ce)}}\right) ;\quad \rho _{22}^{\text {de(ce)}}=2\left( 4-p(1+3\xi _{\text {de(ce)}})\right) \\ \rho _{15}^{\text {de(ce)}}= & {} \text {B}^{+};\quad \rho _{35}^{\text {de(ce)}}=\text {B}^{-}\quad \text {with}\quad \text {B}^{\pm }=6p\left( 1\pm 2\alpha _{\text {de(ce)}}+\xi _{\text {de(ce)}}\right) \\ \rho _{19}^{\text {de(ce)}}= & {} \text {Z}^{+};\quad \rho _{37}^{\text {de(ce)}}=\text {Z}^{-}\quad \text {with}\quad \text {Z}^{\pm }=3p\left( 3\pm 4\alpha _{\text {de(ce)}}+\xi _{\text {de(ce)}}\right) \\ \rho _{25}^{\text {de(ce)}}= & {} 6ip\sqrt{2}\Omega _{\text {de(ce)}}S_{4}(t);\quad \rho _{55}^{\text {de(ce)}}=4\left( 2+p(1+3\xi _{\text {de(ce)}})\right) \end{aligned}$$

where

$$\begin{aligned} \alpha _{\text {de(ce)}}= & {} \Pi _{\text {de(ce)}}C_{2}(t);\quad \xi _{\text {de(ce)}}=\Omega _{\text {de(ce)}}C_{4}(t);\quad \Pi _{\text {de}}=K_{(1)}^{2};\quad \Pi _{\text {ce}}=K_{(2)};\\ \Omega _{\text {de}}= & {} K_{(2)}^{2};\quad \Omega _{\text {ce}}=K_{(4)}\\ \Pi _{\text {de}}= & {} K_{(1)}^{2};\quad \Pi _{\text {ce}}=K_{(2)};\quad \Omega _{\text {de}}=K_{(2)}^{2};\quad \Omega _{\text {ce}}=K_{(4)}\\ C_{n}(t)= & {} \cos (ngt\vartheta _{0});\quad S_{n}(t)=\sin (ngt\vartheta _{0});\\&K_{(n)}=\frac{2\sin (ngt\vartheta _{m}/2)}{ngt\vartheta _{m}},\quad n\in \left\{ 1,2,4\right\} \end{aligned}$$

1.1.2 Bound entangled states

When the subsystems are initially prepared in bound entangled states and then subject to a static noise, Eqs. (10) and (11) give:

$$\begin{aligned}&\rho _{\text {de(ce)}}(\alpha ,t)\nonumber \\&\quad =\frac{1}{2688}\left( \begin{array}{ccccccccc} s_{11}^{\text {de(ce)}} &{} s_{12}^{\text {de(ce)}} &{} s_{13}^{\text {de(ce)}} &{} s_{14}^{\text {de(ce)}} &{} s_{15}^{\text {de(ce)}} &{} s_{16}^{\text {de(ce)}} &{} s_{17}^{\text {de(ce)}} &{} s_{18}^{\text {de(ce)}} &{} s_{19}^{\text {de(ce)}}\\ -s_{12}^{\text {de(ce)}} &{} s_{22}^{\text {de(ce)}} &{} s_{23}^{\text {de(ce)}} &{} s_{24}^{\text {de(ce)}} &{} s_{25}^{\text {de(ce)}} &{} s_{26}^{\text {de(ce)}} &{} s_{27}^{\text {de(ce)}} &{} s_{28}^{\text {de(ce)}} &{} -s_{16}^{\text {de(ce)}}\\ s_{13}^{\text {de(ce)}} &{} -s_{23}^{\text {de(ce)}} &{} s_{33}^{\text {de(ce)}} &{} s_{34}^{\text {de(ce)}} &{} s_{35}^{\text {de(ce)}} &{} -s_{23}^{\text {de(ce)}} &{} s_{37}^{\text {de(ce)}} &{} s_{34}^{\text {de(ce)}} &{} s_{13}^{\text {de(ce)}}\\ -s_{14}^{\text {de(ce)}} &{} s_{24}^{\text {de(ce)}} &{} -s_{34}^{\text {de(ce)}} &{} s_{44}^{\text {de(ce)}} &{} s_{45}^{\text {de(ce)}} &{} s_{28}^{\text {de(ce)}} &{} s_{47}^{\text {de(ce)}} &{} s_{48}^{\text {de(ce)}} &{} -s_{18}^{\text {de(ce)}}\\ s_{15}^{\text {de(ce)}} &{} -s_{25}^{\text {de(ce)}} &{} s_{35}^{\text {de(ce)}} &{} -s_{45}^{\text {de(ce)}} &{} s_{55}^{\text {de(ce)}} &{} -s_{25}^{\text {de(ce)}} &{} s_{57}^{\text {de(ce)}} &{} -s_{45}^{\text {de(ce)}} &{} s_{15}^{\text {de(ce)}}\\ -s_{16}^{\text {de(ce)}} &{} s_{26}^{\text {de(ce)}} &{} s_{23}^{\text {de(ce)}} &{} s_{28}^{\text {de(ce)}} &{} s_{25}^{\text {de(ce)}} &{} s_{22}^{\text {de(ce)}} &{} s_{27}^{\text {de(ce)}} &{} s_{24}^{\text {de(ce)}} &{} -s_{12}^{\text {de(ce)}}\\ s_{17}^{\text {de(ce)}} &{} -s_{27}^{\text {de(ce)}} &{} s_{37}^{\text {de(ce)}} &{} -s_{47}^{\text {de(ce)}} &{} s_{57}^{\text {de(ce)}} &{} -s_{27}^{\text {de(ce)}} &{} s_{77}^{\text {de(ce)}} &{} -s_{47}^{\text {de(ce)}} &{} s_{17}^{\text {de(ce)}}\\ -s_{18}^{\text {de(ce)}} &{} s_{28}^{\text {de(ce)}} &{} -s_{34}^{\text {de(ce)}} &{} s_{48}^{\text {de(ce)}} &{} s_{45}^{\text {de(ce)}} &{} s_{24}^{\text {de(ce)}} &{} s_{47}^{\text {de(ce)}} &{} s_{44}^{\text {de(ce)}} &{} -s_{14}^{\text {de(ce)}}\\ s_{19}^{\text {de(ce)}} &{} s_{16}^{\text {de(ce)}} &{} s_{13}^{\text {de(ce)}} &{} s_{18}^{\text {de(ce)}} &{} s_{15}^{\text {de(ce)}} &{} s_{12}^{\text {de(ce)}} &{} s_{17}^{\text {de(ce)}} &{} s_{14}^{\text {de(ce)}} &{} s_{11}^{\text {de(ce)}} \end{array}\right) \nonumber \\ \end{aligned}$$
(16)

with

$$\begin{aligned} s_{11}^{\text {de}}= & {} 306-80\Pi _{\text {de}}+C_{2}(t)\left( -20\Pi _{\text {ce}}+48\Pi _{\text {de}}\right) +\left( -15+17C_{4}(t)\right) \Omega _{\text {de}}\\ s_{15}^{\text {de}}= & {} 64+8\Pi _{\text {de}}\left( 5+11C_{2}(t)\right) +2\Omega _{\text {de}}\left( 15+17C_{4}(t)\right) \\ s_{24}^{\text {de}}= & {} 64+40\Pi _{\text {de}}\left( -1+C_{2}(t)\right) -2\Omega _{\text {de}}\left( 15+17C_{4}(t)\right) \\ s_{25}^{\text {de}}= & {} -8i\sqrt{2}S_{1}\left( \Pi _{\text {ce}}C_{1}(t)\left( 5-17\Pi _{\text {ce}}C_{2}(t)\right) -(1+3C_{2}(t)\Pi _{\text {ce}})y_{1}(\alpha )\right) \\ s_{28}^{\text {de}}= & {} 44-40\Pi _{\text {ce}}C_{2}(t)+2\Omega _{\text {de}}\left( 15-17C_{4}(t)\right) \\ s_{45}^{\text {de}}= & {} 4i\sqrt{2}S_{1}(t)\left( -10\Pi _{\text {ce}}C_{1}(t)+17\Omega _{\text {de}}\left( C_{1}(t)+C_{3}(t)\right) -2(1+3\Pi _{\text {ce}}C_{2}(t))y_{1}(\alpha )\right) \\ s_{55}^{\text {de}}= & {} 328-80\Pi _{\text {ce}}C_{2}(t)+4\Omega _{\text {de}}\left( -15+17C_{4}(t)\right) \\ s_{12}^{\text {de}}= & {} \text {A}_{\text {de}}^{+};\quad s_{14}^{\text {de}}=\text {A}_{\text {de}}^{-};\quad s_{16}^{\text {de}}=\text {B}_{\text {de}}^{+};\quad s_{34}^{\text {de}}=\text {B}_{\text {de}}^{-};\quad s_{18}^{\text {de}}=\text {D}_{\text {de}}^{+};\quad s_{27}^{\text {de}}=-\text {D}_{\text {de}}^{-};\\ s_{35}^{\text {de}}= & {} \text {E}_{\text {de}}^{-}\\ s_{57}^{\text {de}}= & {} \text {E}_{\text {de}}^{+};\quad s_{19}^{\text {de}}=\text {F}_{\text {de}}^{+};\quad s_{37}^{\text {de}}=\text {F}_{\text {de}}^{-};\quad s_{33}^{\text {de}}=\text {G}_{\text {de}}^{+};\quad s_{77}^{\text {de}}=\text {G}_{\text {de}}^{-};\quad s_{26}^{\text {de}}=\text {H}_{\text {de}}^{+};\\ s_{48}^{\text {de}}= & {} \text {H}_{\text {de}}^{-}\\ s_{13}^{\text {de}}= & {} \text {I}_{\text {de}}^{+};\quad s_{17}^{\text {de}}=\text {I}_{\text {de}}^{-};\quad s_{22}^{\text {de}}=\text {J}_{\text {de}}^{-};\quad s_{44}^{\text {de}}=\text {J}_{\text {de}}^{+};\quad s_{23}^{\text {de}}=\text {L}_{\text {de}}^{+};\quad s_{47}^{\text {de}}=\text {L}_{\text {de}}^{-} \end{aligned}$$

with

$$\begin{aligned} \text {A}_{\text {de}}^{\pm }= & {} i\sqrt{2}\left( -17S_{4}(t)\Omega _{\text {de}}+2S_{2}(t)\left( 5\Pi _{\text {ce}}-12\Pi _{\text {de}}\right) \right. \\&\left. \pm \,2\left( -2S_{1}(t)+3\left( 3S_{1}(t)+S_{3}(t)\right) \Pi _{\text {ce}}\right) y_{1}(\alpha )\right) \\ \text {B}_{\text {de}}^{\pm }= & {} -i\sqrt{2}\left( 17S_{4}(t)\Omega _{\text {de}}+S_{2}(t)\left( 30\Pi _{\text {ce}}\pm 64\Pi _{\text {de}}\right) \right. \\&\left. -\,6\left( -S_{3}\Pi _{\text {ce}}+S_{1}(2+\Pi _{\text {ce}})\right) y_{1}(\alpha )\right) \\ \text {D}_{\text {de}}^{\pm }= & {} -2i\sqrt{2}S_{1}(t)\left( C_{1}(t)\left( \Pi _{\text {ce}}(30+17\Pi _{\text {ce}})\pm 64\Pi _{\text {de}}\right) +17C_{3}(t)\Omega _{\text {de}}\right. \\&\left. -\,6\left( -1+C_{2}\Pi _{\text {ce}}\right) y_{1}(\alpha )\right) \\ \text {E}_{\text {de}}^{\pm }= & {} 64-8\left( 5+11C_{2}\right) \Pi _{\text {de}}+\left( 30+34C_{4}\right) \Omega _{\text {de}}\pm 24\left( C_{1}-C_{3}\right) \Pi _{\text {ce}}y_{1}(\alpha )\\ \text {F}_{\text {de}}^{\pm }= & {} 66+4C_{2}(t)\left( 15\Pi _{\text {ce}}\pm 32\Pi _{\text {de}}\right) +\left( -15+17C_{4}(t)\right) \Omega _{\text {de}}\\ \text {G}_{\text {de}}^{\pm }= & {} 306+80\Pi _{\text {de}}-4C_{2}\left( 5\Pi _{\text {ce}}+12\Pi _{\text {de}}\right) +\left( -15+17C_{4}\right) \Omega _{\text {de}}\\&\pm \,8\left( 2C_{1}+3(C_{1}+C_{3})\Pi _{\text {ce}}\right) y_{1}(\alpha )\\ \text {H}_{\text {de}}^{\pm }= & {} 64-40\left( -1+C_{2}(t)\right) \Pi _{\text {de}}-2\left( 15+17C_{4}(t)\right) \Omega _{\text {de}}\\&\pm \,24\left( C_{1}(t)-C_{3}(t)\right) \Pi _{\text {ce}}y_{1}(\alpha )\\ \text {I}_{\text {de}}^{\pm }= & {} -22+20\Pi _{\text {ce}}C_{2}(t)-\Omega _{\text {de}}\left( 15-17C_{4}(t)\right) \\&\pm \,12\left( -2C_{1}(t)+\left( C_{1}(t)+C_{3}(t)\right) \Pi _{\text {ce}}\right) y_{1}(\alpha )\\ \text {J}_{\text {de}}^{\pm }= & {} 2\left( 142+20\Pi _{\text {ce}}C_{2}(t)-17\Omega _{\text {de}}C_{4}(t)+15\Omega _{\text {de}}\right. \\&\left. \pm \,4\left( 2C_{1}(t)+3\Pi _{\text {ce}}\left( C_{1}(t)+C_{3}(t)\right) \right) y_{1}(\alpha )\right) \\ \text {L}_{\text {de}}^{\pm }= & {} i\sqrt{2}\left( 17S_{4}(t)\Omega _{\text {de}}-2S_{2}(t)(5\Pi _{\text {ce}}+12\Pi _{\text {de}})\right. \\&\left. \pm \,2\left( 2S_{1}(t)+3\left( S_{1}(t)+3S_{3}(t)\right) \Pi _{\text {ce}}\right) y_{1}(\alpha )\right) \end{aligned}$$

where

$$\begin{aligned} y_{1}(\alpha )= & {} K_{(1)}(5-2\alpha )\\ y_{3}(\alpha )= & {} K_{(3)}(5-2\alpha ) \end{aligned}$$

and

$$\begin{aligned} s_{11}^{\text {ce}}= & {} 211+28\Pi _{\text {ce}}C_{2}(t)+17\Omega _{\text {ce}}C_{4}(t);\quad s_{15}^{\text {ce}}=2\left( 67+44\Pi _{\text {ce}}C_{2}(t)+17\Omega _{\text {ce}}C_{4}(t)\right) \\ s_{19}^{\text {ce}}= & {} 51+188\Pi _{\text {ce}}C_{2}(t)+17\Omega _{\text {ce}}C_{4}(t);\quad s_{24}^{\text {ce}}=-3+20\Pi _{\text {ce}}C_{2}(t)-17\Omega _{\text {ce}}C_{4}(t)\\ s_{28}^{\text {ce}}= & {} 2\left( 37-20\Pi _{\text {ce}}C_{2}(t)-17\Omega _{\text {ce}}C_{4}(t)\right) ;\quad s_{37}^{\text {ce}}=17\left( 3-4\Pi _{\text {ce}}C_{2}(t)+\Omega _{\text {ce}}C_{4}(t)\right) \\ s_{55}^{\text {ce}}= & {} 4\left( 67-20\Pi _{\text {ce}}C_{2}(t)+17\Omega _{\text {ce}}C_{4}(t)\right) ;\quad s_{12}^{\text {ce}}=\text {A}_{ce}^{+};\quad s_{14}^{\text {ce}}=\text {A}_{\text {ce}}^{-}\\ s_{16}^{\text {ce}}= & {} \text {B}_{\text {ce}}^{-};\quad s_{18}^{\text {ce}}=\text {B}_{\text {ce}}^{+};\quad s_{13}^{\text {ce}}=\text {D}_{\text {ce}}^{-};\quad s_{17}^{\text {ce}}=\text {D}_{\text {ce}}^{+};\quad s_{27}^{\text {ce}}=\text {E}_{\text {ce}}^{-};\quad s_{34}^{\text {ce}}=-\text {E}_{\text {ce}}^{+};\\ s_{22}^{\text {ce}}= & {} \text {F}_{\text {ce}}^{-};\quad s_{44}^{\text {ce}}=\text {F}_{\text {ce}}^{+};\quad s_{33}^{\text {ce}}=\text {G}_{\text {ce}}^{+};\quad s_{77}^{\text {ce}}=\text {G}_{\text {ce}}^{-};\quad s_{23}^{\text {ce}}=\text {H}_{\text {ce}}^{-};\quad s_{47}^{\text {ce}}=\text {H}_{\text {ce}}^{+};\\ s_{26}^{\text {ce}}= & {} \text {I}_{\text {ce}}^{+};\quad s_{48}^{\text {ce}}=\text {I}_{\text {ce}}^{-};\quad s_{35}^{\text {ce}}=\text {J}_{\text {ce}}^{-};\quad s_{57}^{\text {ce}}=\text {J}_{\text {ce}}^{+};\quad s_{35}^{\text {ce}}=\text {L}_{\text {ce}}^{-};\quad s_{57}^{\text {ce}}=\text {L}_{\text {ce}}^{+} \end{aligned}$$

with

$$\begin{aligned} \text {A}_{\text {ce}}^{\pm }= & {} -i\sqrt{2}\left( 14\Pi _{\text {ce}}S_{2}(t)+17\Omega _{\text {ce}}S_{4}(t)\pm 2\left( 7y_{1}(\alpha )S_{1}(t)+3S_{3}(t)y_{3}(\alpha )\right) \right) \\ \text {B}_{\text {ce}}^{\pm }= & {} -i\sqrt{2}\left( 94\Pi _{\text {ce}}S_{2}(t)+17\Omega _{\text {ce}}S_{4}(t)\pm \left( 18y_{1}(\alpha )S_{1}(t)-6S_{3}(t)y_{3}(\alpha )\right) \right) \\ \text {D}_{\text {ce}}^{\pm }= & {} -37+20\Pi _{\text {ce}}C_{2}(t)+17\Omega _{\text {ce}}S_{4}(t)\pm 12\left( C_{1}(t)y_{1}(\alpha )-C_{3}(t)y_{3}(\alpha )\right) \\ \text {E}_{\text {ce}}^{\pm }= & {} -i\sqrt{2}\left( 34\Pi _{\text {ce}}S_{2}(t)-17\Omega _{\text {ce}}S_{4}(t)\pm 6\left( 3y_{1}(\alpha )S_{1}(t)-S_{3}(t)y_{3}(\alpha )\right) \right) \\ \text {F}_{\text {ce}}^{\pm }= & {} 314+40\Pi _{\text {ce}}C_{2}(t)-34\Omega _{\text {ce}}C_{4}(t)\pm 8\left( 5C_{1}(t)y_{1}(\alpha )+3C_{3}(t)y_{3}(\alpha )\right) \\ \text {G}_{\text {ce}}^{\pm }= & {} 371-68\Pi _{\text {ce}}C_{2}(t)+17\Omega _{\text {ce}}C_{4}(t)\pm 8\left( 5C_{1}(t)y_{1}(\alpha )+3C_{3}(t)y_{3}(\alpha )\right) \\ \text {H}_{\text {ce}}^{\pm }= & {} -i\sqrt{2}\left( 34\Pi _{\text {ce}}S_{2}(t)-17\Omega _{\text {ce}}S_{4}(t)\pm 2\left( 5y_{1}(\alpha )S_{1}(t)+9S_{3}(t)y_{3}(\alpha )\right) \right) \\ \text {I}_{\text {ce}}^{\pm }= & {} 74-40\Pi _{\text {ce}}C_{2}(t)-34\Omega _{\text {ce}}C_{4}(t)\pm 24\left( C_{1}(t)y_{1}(\alpha )-C_{3}(t)y_{3}(\alpha )\right) \\ \text {J}_{\text {ce}}^{\pm }= & {} 54-88\Pi _{\text {ce}}C_{2}(t)+34\Omega _{\text {ce}}C_{4}(t)\pm 24\left( C_{1}(t)y_{1}(\alpha )-C_{3}(t)y_{3}(\alpha )\right) \\ \text {L}_{\text {ce}}^{\pm }= & {} 2i\sqrt{2}\left( -10\Pi _{\text {ce}}S_{2}(t)+17\Omega _{\text {ce}}S_{4}(t)\pm 2\left( y_{1}(\alpha )S_{1}(t)-3S_{3}(t)y_{3}(\alpha )\right) \right) \end{aligned}$$

1.2 Dynamic noise

1.2.1 Isotropic states

For the dynamic noise model, when the system is initially prepared in state of Eq. (5), density matrices from Eq. (12) take the following form:

$$\begin{aligned}&\rho _{\text {de(ce)}}(t)\nonumber \\&\quad =\frac{1}{72}\left( \begin{array}{ccccccccc} A_{\text {de(ce)}}^{+} &{} 0 &{} B_{\text {de(ce)}} &{} 0 &{} C_{\text {de(ce)}}^{+} &{} 0 &{} B_{\text {de(ce)}} &{} 0 &{} D_{\text {de(ce)}}^{+}\\ 0 &{} E_{\text {de(ce)}} &{} 0 &{} -2B_{\text {de(ce)}} &{} 0 &{} -2B_{\text {de(ce)}} &{} 0 &{} -2B_{\text {de(ce)}} &{} 0\\ B_{\text {de(ce)}} &{} 0 &{} A_{\text {de(ce)}}^{-} &{} 0 &{} C_{\text {de(ce)}}^{-} &{} 0 &{} D_{\text {de(ce)}}^{-} &{} 0 &{} B_{\text {de(ce)}}\\ 0 &{} -2B_{\text {de(ce)}} &{} 0 &{} E_{\text {de(ce)}} &{} 0 &{} -2B_{\text {de(ce)}} &{} 0 &{} -2B_{\text {de(ce)}} &{} 0\\ C_{\text {de(ce)}}^{+} &{} 0 &{} C_{\text {de(ce)}}^{-} &{} 0 &{} F_{\text {de(ce)}} &{} 0 &{} C_{\text {de(ce)}}^{-} &{} 0 &{} C_{\text {de(ce)}}^{+}\\ 0 &{} -2B_{\text {de(ce)}} &{} 0 &{} -2B_{\text {de(ce)}} &{} 0 &{} E_{\text {de(ce)}} &{} 0 &{} -2B_{\text {de(ce)}} &{} 0\\ B_{\text {de(ce)}} &{} 0 &{} D_{\text {de(ce)}}^{-} &{} 0 &{} C_{\text {de(ce)}}^{-} &{} 0 &{} A_{\text {de(ce)}}^{-} &{} 0 &{} B_{\text {de(ce)}}\\ 0 &{} -2B_{\text {de(ce)}} &{} 0 &{} -2B_{\text {de(ce)}} &{} 0 &{} -2B_{\text {de(ce)}} &{} 0 &{} E_{\text {de(ce)}} &{} 0\\ D_{\text {de(ce)}}^{+} &{} 0 &{} B_{\text {de(ce)}} &{} 0 &{} C_{\text {de(ce)}}^{+} &{} 0 &{} B_{\text {de(ce)}} &{} 0 &{} A_{\text {de(ce)}}^{+} \end{array}\right) \nonumber \\ \end{aligned}$$
(17)

where

$$\begin{aligned} A_{\text {de(ce)}}^{\pm }= & {} 8+p\left( 1\pm 12\Phi _{\text {de(ce)}}+3\Psi _{\text {de(ce)}}\right) \\ B_{\text {de(ce)}}= & {} 3p\left( \Psi _{\text {de(ce)}}-1\right) \\ C_{\text {de(ce)}}^{\pm }= & {} 6p\left( 1\pm 2\Phi _{\text {de(ce)}}+\Psi _{\text {de(ce)}}\right) \\ D_{\text {de(ce)}}^{\pm }= & {} 3p\left( 3\pm 4\Phi _{\text {de(ce)}}+\Psi _{\text {de(ce)}}\right) \\ E_{\text {de(ce)}}= & {} 2\left( 4-p(1+3\Psi _{\text {de(ce)}})\right) \\ F_{\text {de(ce)}}= & {} 4\left( 2+p\left( 1+3\Psi _{\text {de(ce)}}\right) \right) \\ \Phi _{\text {de}}= & {} \Gamma _{1}^{2}(t);\quad \Psi _{\text {de}}=\Gamma _{2}^{2}(t);\quad \Phi _{\text {ce}}=\Gamma _{2}(t);\quad \Psi _{\text {ce}}=\Gamma _{4}(t). \end{aligned}$$

1.2.2 Bound entangled states

Here Eq. (12) gives:

$$\begin{aligned} \tilde{\rho }_{\text {de}}(t)= & {} \frac{1}{1344}\left( \begin{array}{ccccccccc} A_{1} &{} 0 &{} B_{1}^{-} &{} 0 &{} C_{1} &{} 0 &{} B_{1}^{+} &{} 0 &{} D_{1}^{+}\\ 0 &{} E_{1}^{+} &{} 0 &{} F_{1} &{} 0 &{} F_{1} &{} 0 &{} G_{1} &{} 0\\ B_{1}^{-} &{} 0 &{} H_{1}^{-} &{} 0 &{} J_{1} &{} 0 &{} D_{1}^{-} &{} 0 &{} B_{1}^{-}\\ 0 &{} F_{1} &{} 0 &{} E_{1}^{-} &{} 0 &{} G_{1} &{} 0 &{} F_{1} &{} 0\\ C_{1} &{} 0 &{} J_{1} &{} 0 &{} K_{1} &{} 0 &{} J_{1} &{} 0 &{} C_{1}\\ 0 &{} F_{1} &{} 0 &{} G_{1} &{} 0 &{} E_{1}^{+} &{} 0 &{} F_{1} &{} 0\\ B_{1}^{+} &{} 0 &{} D_{1}^{-} &{} 0 &{} J_{1} &{} 0 &{} H_{1}^{+} &{} 0 &{} B_{1}^{+}\\ 0 &{} G_{1} &{} 0 &{} F_{1} &{} 0 &{} F_{1} &{} 0 &{} E_{1}^{-} &{} 0\\ D_{1}^{+} &{} 0 &{} B_{1}^{-} &{} 0 &{} C_{1} &{} 0 &{} B_{1}^{+} &{} 0 &{} A_{1} \end{array}\right) \end{aligned}$$
(18)
$$\begin{aligned} \tilde{\rho }_{\text {ce}}(t)= & {} \frac{1}{2688}\left( \begin{array}{ccccccccc} A_{2} &{} 0 &{} B_{2}^{+} &{} 0 &{} C_{2} &{} 0 &{} B_{2}^{-} &{} 0 &{} D_{2}\\ 0 &{} E_{2}^{+} &{} 0 &{} F_{2} &{} 0 &{} -B_{2}^{+} &{} 0 &{} H_{2} &{} 0\\ B_{2}^{+} &{} 0 &{} I_{2}^{-} &{} 0 &{} J_{2}^{+} &{} 0 &{} K_{2} &{} 0 &{} B_{2}^{+}\\ 0 &{} F_{2} &{} 0 &{} E_{2}^{-} &{} 0 &{} H_{2} &{} 0 &{} -B_{2}^{-} &{} 0\\ C_{2} &{} 0 &{} J_{2}^{+} &{} 0 &{} L_{2} &{} 0 &{} J_{2}^{-} &{} 0 &{} C_{2}\\ 0 &{} -B_{2}^{+} &{} 0 &{} H_{2} &{} 0 &{} E_{2}^{+} &{} 0 &{} F_{2} &{} 0\\ B_{2}^{-} &{} 0 &{} K_{2} &{} 0 &{} J_{2}^{-} &{} 0 &{} I_{2}^{+} &{} 0 &{} B_{2}^{-}\\ 0 &{} H_{2} &{} 0 &{} -B_{2}^{-} &{} 0 &{} F_{2} &{} 0 &{} E_{2}^{-} &{} 0\\ D_{2} &{} 0 &{} B_{2}^{+} &{} 0 &{} C_{2} &{} 0 &{} B_{2}^{-} &{} 0 &{} A_{2} \end{array}\right) \end{aligned}$$
(19)

where

$$\begin{aligned} A_{1}= & {} 153-16\Phi _{\text {de}}-(10-\Phi _{\text {ce}})\Phi _{\text {ce}}\\ B_{1}^{\pm }= & {} \left( -1+\Phi _{\text {ce}}\right) \left( 11+\Phi _{\text {ce}}\pm 12f(\alpha )\Gamma _{1}(t)\right) \\ C_{1}= & {} 32\left( 1+2\Phi _{\text {de}}+\Psi _{\text {de}}\right) \\ D_{1}^{\pm }= & {} 33\pm 64\Phi _{\text {de}}+\Phi _{\text {ce}}\left( 30+\Phi _{\text {ce}}\right) \\ E_{1}^{\pm }= & {} 2\left( 71+\left( 10-\Phi _{\text {ce}}\right) \Phi _{\text {ce}}\pm 4\Gamma _{1}(t)\left( 1+3\Phi _{\text {ce}}\right) f(\alpha )\right) \\ F_{1}= & {} 64\left( 1-\Psi _{\text {de}}\right) \\ G_{1}= & {} 2\left( 1-\Phi _{\text {ce}}\right) \left( 11+\Phi _{\text {ce}}\right) \\ H_{1}^{\pm }= & {} 153+16\Phi _{\text {de}}-\left( 10-\Phi _{\text {ce}}\right) \Phi _{\text {ce}}\pm 8\Gamma _{1}(t)\left( 1+3\Phi _{\text {ce}}\right) f(\alpha )\\ J_{1}= & {} 32\left( 1-2\Phi _{\text {de}}+\Psi _{\text {de}}\right) \\ K_{1}= & {} 4\left( 41-(10-\Phi _{\text {ce}})\Phi _{\text {ce}}\right) \end{aligned}$$

and

$$\begin{aligned} A_{2}= & {} 211+28\Phi _{\text {ce}}+17\Psi _{\text {ce}}\\ B_{2}^{\pm }= & {} -37+20\Phi _{\text {ce}}+17\Psi _{\text {ce}}\pm 12\left( \Gamma _{1}(t)-\Gamma _{3}(t)\right) f(\alpha )\\ C_{2}= & {} 2\left( 67+44\Phi _{\text {ce}}+17\Psi _{\text {ce}}\right) \\ D_{2}= & {} 188\Phi _{\text {ce}}+17\left( 3+\Psi _{\text {ce}}\right) \\ E_{2}^{\pm }= & {} 2\left( 157+20\Phi _{\text {ce}}-17\Psi _{\text {ce}}\pm 4\left( 3\Gamma _{3}(t)+5\Gamma _{1}(t)\right) f(\alpha )\right) \\ F_{2}= & {} 2\left( -3+20\Phi _{\text {ce}}-17\Psi _{\text {ce}}\right) \\ H_{2}= & {} 2\left( 37-20\Phi _{\text {ce}}-17\Psi _{\text {ce}}\right) \\ I_{2}^{\pm }= & {} 371-68\Phi _{\text {ce}}+17\Psi _{\text {ce}}\pm 8\left( 5\Gamma _{1}(t)+3\Gamma _{3}(t)\right) f(\alpha )\\ J_{2}^{\pm }= & {} 2\left( 27-44\Phi _{\text {ce}}+17\Psi _{\text {ce}}\pm 12\left( \Gamma _{1}(t)-\Gamma _{3}(t)\right) f(\alpha )\right) \\ K_{2}= & {} 17\left( 3-4\Phi _{\text {ce}}+\Psi _{\text {ce}}\right) \\ L_{2}= & {} 4\left( 67-20\Phi _{\text {ce}}+17\Psi _{\text {ce}}\right) \end{aligned}$$

with

$$\begin{aligned} f(\alpha )=-5+2\alpha . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsokeng, A.T., Tchoffo, M. & Fai, L.C. Free and bound entanglement dynamics in qutrit systems under Markov and non-Markov classical noise. Quantum Inf Process 17, 190 (2018). https://doi.org/10.1007/s11128-018-1949-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1949-z

Keywords

Navigation