Skip to main content

Advertisement

Multiparty quantum key agreement protocol based on locally indistinguishable orthogonal product states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on locally indistinguishable orthogonal product states, we propose a novel multiparty quantum key agreement (QKA) protocol. In this protocol, the private key information of each party is encoded as some orthogonal product states that cannot be perfectly distinguished by local operations and classical communications. To ensure the security of the protocol with small amount of decoy particles, the different particles of each product state are transmitted separately. This protocol not only can make each participant fairly negotiate a shared key, but also can avoid information leakage in the maximum extent. We give a detailed security proof of this protocol. From comparison result with the existing QKA protocols, we can know that the new protocol is more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Diffie, W., Hellman, M.: New direction in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ingemarsson, I., Tang, D.T., Wong, C.K.: A conference key distribution system. IEEE Trans. Inf. Theory 28, 714–719 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Trans. Parallel Distrib. Syst. 11, 769–780 (2000)

    Article  Google Scholar 

  4. Mitchell, C.J., Ward, M., Wilson, P.: Key control in key agreement protocols. Electron. Lett. 34(10), 980–981 (1998)

    Article  Google Scholar 

  5. Ateniese, G., Steiner, M., Tsudik, G.: New multiparty authentication services and key agreement protocols. IEEE J. Sel. Areas Commun. 18(4), 628–639 (2000)

    Article  Google Scholar 

  6. Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)

    Article  ADS  Google Scholar 

  7. Salas, P.J.: Security of plug-and-play QKD arrangements with finite resources. Quantum Inf. Comput. 13, 861–879 (2013)

    Google Scholar 

  8. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pairblock. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  9. Cui, Y.J.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qin, S.J., Gao, F., Wen, Q.Y., et al.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)

    Article  ADS  MATH  Google Scholar 

  11. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)

    Article  ADS  MATH  Google Scholar 

  12. Long, G.L., Liu, X.S.: Theoretically efficent high capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  13. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  14. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  15. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horn–Zeilinger state. Opt. Commun. 283, 192–195 (2010)

    Article  ADS  Google Scholar 

  16. Huang, W., Zuo, H.J., Li, Y.B.: Cryptanalysis and improvement of a multi-user quantum communication network using type entangled states. Int. J. Theor. Phys. 52, 1354–1361 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled ststes. Phy. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  18. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  20. Martini, F.D., Giovannetti, V., Lloyd, S., Maccone, L., et al.: Experimental quantum private queries with linear optics. Phys. Rev. A 80, 010302 (2009)

    Article  Google Scholar 

  21. Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  22. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quantum 21, 6600111 (2015)

    Google Scholar 

  23. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  24. Wei, C.Y., Cai, X.Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zeng, G.H., Keitel, C.H.: An arbitrated quantum signature algorithm. Phys. Rev. A 65, 042312 (2002)

    Article  ADS  Google Scholar 

  26. Lee, H., Hong, C.H., Kim, H., et al.: Arbitrated quantum signature scheme with message recovery. Phys. Rev. A 321, 295–300 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Wen, X.J., Niu, X.M., Ji, L.P.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282, 666–669 (2009)

    Article  ADS  Google Scholar 

  28. Wang, T.Y., Wen, Q.Y.: Fair quantum blind sigantures. Chin. Phys. B 19, 060307–060311 (2010)

    Article  ADS  Google Scholar 

  29. Wen, X.J., Tian, Y., Niu, X.M.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001–055006 (2010)

    Article  ADS  MATH  Google Scholar 

  30. Liu, F., Qin, S.J., Su, Q.: An arbitrated quantum signature scheme with fast signing and verifying. Quantum Inf. Process. 13, 491–502 (2014)

    Article  ADS  MATH  Google Scholar 

  31. Xu, G.B., Zhang, K.J.: A novel quantum group signature scheme without using entangled states. Quantum Inf. Process. 14, 2577–2587 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Xu, G.B.: Novel quantum proxy signature without entanglement. Int. J. Theor. Phys. 54(8), 2605–2612 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)

    Article  Google Scholar 

  34. Tsai, C., Hwang, T.: On quantum key agreement protocol. Technical report, C-S-I-E, NCKU, Taiwan, ROC (2009)

  35. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    Article  MATH  Google Scholar 

  36. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Huang, W., Wen, Q.Y., Liu, B., Fei, G., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Liu, B., Xiao, D., Jia, H.Y., Liu, R.Z.: Collusive attacks to circle-type multi-party quantum key agreement protocols. Quantum Inf. Process. 15, 2113 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Sun, Z.W., Zhang, C., Wang, B.H., et al.: Improvements on multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(11), 3411–3420 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13(11), 2391–2405 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 14(11), 4245–4254 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Sun, Z.W., Zhang, C., Wang, P., Yu, J.P., Zhang, Y., Long, D.Y.: Multi-Party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55(3), 1920–1929 (2016)

    Article  MATH  Google Scholar 

  45. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13(12), 2587–2594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Yin, X.R., Wen, W.P., Shen, D.S., et al.: Three-party quantum key agreement with Bell states. Acta Phys. Sin. 62(17), 170304 (2013)

    Google Scholar 

  47. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14(9), 3483–3498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Yang, Y.H., Gao, F., Xu, G.B., Zuo, H.J., Zhang, Z.C., Wen, Q.Y.: Characterizing unextendible product bases in qutrit-ququad system. Sci. Rep. 5, 11963 (2015)

    Article  ADS  Google Scholar 

  49. Ma, H.J., Jia, Y.M.: Stability analysis for stochastic differential equations with infinite Markovian switchings. J. Math. Anal. Appl. 435, 593–605 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, Z., Huang, X., Shi, G.D.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62, 1531–1539 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yu, S.X., Oh, C.H.: Detecting the local indistinguishability of maximally entangled states (2015). arXiv:1502.01274v1 [quant-ph]

  52. Wang, Y.L., Li, M.S., Zheng, Z.J., Fei, S.M.: Nonlocality of orthogonal product-basis quantum states. Phys. Rev. A 92, 032313 (2015)

    Article  ADS  Google Scholar 

  53. Zhang, Z.C., Gao, F., Cao, Y., Qin, S.J., Wen, Q.Y.: Local indistinguishability of orthogonal product states. Phys. Rev. A 93, 012314 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  54. Xu, G.B., Wen, Q.Y., Qin, S.J., Yang, Y.H., Gao, F.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93(3), 032341 (2016)

    Article  ADS  Google Scholar 

  55. Xu, G.B., Yang, Y.H., Wen, Q.Y., Qin, S.J., Gao, F.: Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system. Sci. Rep. 6, 31048 (2016)

    Article  ADS  Google Scholar 

  56. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J., Zuo, H.J.: Local indistinguishability of multipartite orthogonal product bases. Quantum Inf. Process. 16, 276 (2017)

    Article  ADS  MATH  Google Scholar 

  57. Guo, G.P., Li, C.F., et al.: Quantum key distribution scheme with orthogonal product states. Phys. Rev. A 64, 042301 (2001)

    Article  ADS  Google Scholar 

  58. Zhao, Q.Y., Zhang, D.X., Li, X.Y.: Quantum key distribution protocol using orthogonal product quantum states. J. Univ. Electr. Sci. Technol. China 37(3), 401–403 (2008)

    MathSciNet  Google Scholar 

  59. Yang, Y.G., Wen, Q.Y., Zhu, F.C.: An efficient quantum secret sharing protocol with orthogonal product states. Sci. China Phys. Mech. 50, 331–338 (2007)

    Article  MATH  Google Scholar 

  60. Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89, 147901 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  62. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  63. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  64. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant Nos. 61402148, 61601171) and Project of Science and Technology Department of Henan Province of China (172102210275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Bao Xu.

Appendix: a proof of Theorem 1

Appendix: a proof of Theorem 1

Proof

Now we prove the states (1) cannot be perfectly distinguished by LOCC if the first party goes first. If so, then by their symmetry these states cannot be perfectly distinguished with the second party going first.

Suppose that the first party performs a general measurement with a set of \(3\times 3\) POVM elements \(\{M^{\dag }_{k}M_{k};\,k=1,2,\ldots ,l_{1}\}\), where

$$\begin{aligned} \begin{aligned} M_{k}^{\dag }M_{k}= \left[ \begin{array}{ccc} m_{00}^{k} &{}\quad m_{01}^{k} &{}\quad m_{02}^{k}\\ m_{10}^{k} &{}\quad m_{11}^{k} &{}\quad m_{12}^{k}\\ m_{20}^{k} &{}\quad m_{21}^{k} &{}\quad m_{22}^{k} \end{array} \right] \end{aligned} \end{aligned}$$

under the basis \(\{|0\rangle ,|1\rangle ,|2\rangle \}\).

It is noted that the postmeasurement states must be pairwise orthogonal for making further discrimination feasible. That is, the states that are orthogonal on the first side should maintain the orthogonality on the first side after the measurement.

For the states \(|\psi _{1}\rangle \) and \(|\psi _{5}\rangle \), we can get

$$\begin{aligned}&\langle \psi _{1}|M_{k}^{\dag }M_{k}\otimes (I_{3\times 3}^{\dag }I_{3\times 3})|\psi _{5}\rangle =0,\\&\langle \psi _{5}|M_{k}^{\dag }M_{k}\otimes (I_{3\times 3}^{\dag }I_{3\times 3})|\psi _{1}\rangle =0, \end{aligned}$$

i.e.,

$$\begin{aligned}&\frac{1}{2}[(\langle 0|+\langle 1|)M_{k}^{\dag }M_{k}|2\rangle ][\langle 1|I_{3\times 3}^{\dag } I_{3\times 3}(|0\rangle +|1\rangle )]=0,\\&\frac{1}{2}[\langle 2|M_{k}^{\dag }M_{k}(|0\rangle +|1\rangle )][(\langle 0|+\langle 1|)I_{3\times 3}^{\dag } I_{3\times 3}|1\rangle ]=0. \end{aligned}$$

Thus,

$$\begin{aligned}&m_{02}^{k}+m_{12}^{k}=0,\end{aligned}$$
(11)
$$\begin{aligned}&m_{20}^{k}+m_{21}^{k}=0. \end{aligned}$$
(12)

For the states \(|\psi _{2}\rangle \) and \(|\psi _{5}\rangle \), we can get

$$\begin{aligned}&\langle \psi _{2}|M_{k}^{\dag }M_{k}\otimes (I_{3\times 3}^{\dag }I_{3\times 3})|\psi _{5}\rangle =0,\\&\langle \psi _{5}|M_{k}^{\dag }M_{k}\otimes (I_{3\times 3}^{\dag }I_{3\times 3})|\psi _{2}\rangle =0, \end{aligned}$$

i.e.,

$$\begin{aligned}&\frac{1}{2}[(\langle 0|-\langle 1|)M_{k}^{\dag }M_{k}|2\rangle ][\langle 1|I_{3\times 3}^{\dag } I_{3\times 3}(|0\rangle +|1\rangle )]=0,\\&\frac{1}{2}[\langle 2|M_{k}^{\dag }M_{k}(|0\rangle -|1\rangle )][(\langle 0|+\langle 1|)I_{3\times 3}^{\dag } I_{3\times 3}|1\rangle ]=0. \end{aligned}$$

Thus,

$$\begin{aligned}&m_{02}^{k}-m_{12}^{k}=0,\end{aligned}$$
(13)
$$\begin{aligned}&m_{20}^{k}-m_{21}^{k}=0. \end{aligned}$$
(14)

So, we have

$$\begin{aligned} m_{02}^{k}=m_{12}^{k}=0 \end{aligned}$$
(15)

by Eqs. (11) and (13); and

$$\begin{aligned} m_{20}^{k}=m_{21}^{k}=0 \end{aligned}$$
(16)

by Eqs. (12) and (14).

For the states \(|\psi _{3}\rangle \) and \(|\psi _{7}\rangle \), we can get

$$\begin{aligned}&\langle \psi _{3}|M_{k}^{\dag }M_{k}\otimes (I_{3\times 3}^{\dag }I_{3\times 3})|\psi _{7}\rangle =0,\\&\langle \psi _{7}|M_{k}^{\dag }M_{k}\otimes (I_{3\times 3}^{\dag }I_{3\times 3})|\psi _{3}\rangle =0, \end{aligned}$$

i.e.,

$$\begin{aligned}&\frac{1}{2}[(\langle 0|+\langle 2|)M_{k}^{\dag }M_{k}|1\rangle ][\langle 2|I_{3\times 3}^{\dag } I_{3\times 3}(|0\rangle +|2\rangle )]=0,\\&\frac{1}{2}[\langle 1|M_{k}^{\dag }M_{k}(|0\rangle +|2\rangle )][(\langle 0|+\langle 2|)I_{3\times 3}^{\dag } I_{3\times 3}|2\rangle ]=0. \end{aligned}$$

Thus,

$$\begin{aligned}&m_{01}^{k}+m_{21}^{k}=0,\end{aligned}$$
(17)
$$\begin{aligned}&m_{10}^{k}+m_{12}^{k}=0. \end{aligned}$$
(18)

For the states \(|\psi _{4}\rangle \) and \(|\psi _{7}\rangle \), we can get

$$\begin{aligned}&\langle \psi _{4}|M_{k}^{\dag }M_{k}\otimes (I_{3\times 3}^{\dag }I_{3\times 3})|\psi _{7}\rangle =0,\\&\langle \psi _{7}|M_{k}^{\dag }M_{k}\otimes (I_{3\times 3}^{\dag }I_{3\times 3})|\psi _{4}\rangle =0, \end{aligned}$$

i.e.,

$$\begin{aligned}&\frac{1}{2}[(\langle 0|-\langle 2|)M_{k}^{\dag }M_{k}|1\rangle ][\langle 2|I_{3\times 3}^{\dag } I_{3\times 3}(|0\rangle +|2\rangle )]=0,\\&\frac{1}{2}[\langle 1|M_{k}^{\dag }M_{k}(|0\rangle -|2\rangle )][(\langle 0|+\langle 2|)I_{3\times 3}^{\dag } I_{3\times 3}|2\rangle ]=0. \end{aligned}$$

Thus,

$$\begin{aligned}&m_{01}^{k}-m_{21}^{k}=0,\end{aligned}$$
(19)
$$\begin{aligned}&m_{10}^{k}-m_{12}^{k}=0. \end{aligned}$$
(20)

So, we have

$$\begin{aligned} m_{01}^{k}=m_{21}^{k}=0 \end{aligned}$$
(21)

by Eqs. (17) and (19); and

$$\begin{aligned} m_{10}^{k}=m_{12}^{k}=0 \end{aligned}$$
(22)

by Eqs. (18) and (20).

For the states \(|\psi _{1}\rangle \) and \(|\psi _{2}\rangle \), we can get

$$\begin{aligned} \langle \psi _{1}|M_{k}^{\dag }M_{k}\otimes (I_{3\times 3}^{\dag }I_{3\times 3}) |\psi _{2}\rangle =0, \end{aligned}$$

i.e.,

$$\begin{aligned} \frac{1}{2}[(\langle 0|+\langle 1|)M_{k}^{\dag }M_{k}(|0\rangle -|1\rangle )][\langle 1|I_{3\times 3}^{\dag } I_{3\times 3}|1\rangle ]=0, \end{aligned}$$

Thus,

$$\begin{aligned} m_{00}^{k}-m_{01}^{k}+m_{10}^{k}-m_{11}^{k}=0. \end{aligned}$$
(23)

So, we have

$$\begin{aligned} m_{00}^{k}=m_{11}^{k} \end{aligned}$$

by Eqs. (21) and (22).

For the states \(|\psi _{3}\rangle \) and \(|\psi _{4}\rangle \), we can get

$$\begin{aligned} \langle \psi _{3}|M_{k}^{\dag }M_{k}\otimes (I_{3\times 3}^{\dag }I_{3\times 3})|\psi _{4}\rangle =0, \end{aligned}$$

i.e.,

$$\begin{aligned} \frac{1}{2}[(\langle 0|+\langle 2|)M_{k}^{\dag }M_{k}(|0\rangle -|2\rangle )][\langle 2|I_{3\times 3}^{\dag } I_{3\times 3}|2\rangle ]=0, \end{aligned}$$

Thus,

$$\begin{aligned} m_{00}^{k}-m_{02}^{k}+m_{20}^{k}-m_{22}^{k}=0. \end{aligned}$$
(24)

So, we have

$$\begin{aligned} m_{00}^{k}=m_{22}^{k} \end{aligned}$$

by Eqs. (15) and (16).

This means that any of the POVM elements of the first party should be in the form

$$\begin{aligned} \begin{aligned} M_{k}^{\dag }M_{k}= \left[ \begin{array}{ccc} m_{00}^{k} &{}\quad 0 &{}\quad 0\\ 0 &{}\quad m_{00}^{k} &{}\quad 0\\ 0 &{}\quad 0 &{}\quad m_{00}^{k} \end{array} \right] \end{aligned}. \end{aligned}$$
(25)

Consider the states \(|\psi _{5}\rangle \) and \(|\psi _{7}\rangle \). If the first party distinguishes the states outright then for one of states \(|\psi _{5}\rangle \) and \(|\psi _{7}\rangle \), \(\langle \psi _{i}|M_{k}^{\dag }M_{k}\otimes (I_{3\times 3})^{\otimes 4}|\psi _{i}\rangle =0.\) But given (25), \(\langle \psi _{i}|M_{k}^{\dag }M_{k}\otimes (I_{3\times 3})^{\otimes 4}|\psi _{i}\rangle =m_{00}^{k}.\) Thus, \(m_{00}^{k}=0\) and, since POVM elements must be positive, \(M_{k}^{\dag }M_{k}\) is the null matrix.

According to the above analysis, all of the first party’s POVM elements must be proportional to the identity. Thus, the first party cannot go first and by the symmetry of states (1), neither can the second party. Therefore, these states are locally indistinguishable. This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, DH., Xu, GB. Multiparty quantum key agreement protocol based on locally indistinguishable orthogonal product states. Quantum Inf Process 17, 180 (2018). https://doi.org/10.1007/s11128-018-1951-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1951-5

Keywords