Skip to main content
Log in

A model of discrete quantum computation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a model of discrete quantum computing focused on a set of discrete quantum states. For this, we choose the set that is the most outstanding in terms of simplicity of the states: the set of Gaussian coordinate states, which includes all the quantum states whose coordinates in the computation base, except for a normalization factor \(\sqrt{2^{-k}}\), belong to the ring of Gaussian integers \(\mathbb {Z}[i]=\{a+bi\ |\ a,b\in \mathbb {Z}\}\). We also introduce a finite set of quantum gates that transforms discrete states into discrete states and generates all discrete quantum states, and the set of discrete quantum gates, as the quantum gates that leave the set of discrete states invariant. We prove that the quantum gates of the model generate the expected discrete states and the discrete quantum gates of 2-qubits and conjecture that they also generate the discrete quantum gates of n-qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We usually represent these vectors by their decimal encodings, for example \(|1001\rangle =|9\rangle \), so in a system of n qubits the computational base is represented by \(\{|0\rangle ,|1\rangle ,\ldots ,|2^n-1\rangle \}\).

References

  1. Schaller, R.R.: Moore’s law: past, present and future. Spectr. IEEE 34(6), 52–59 (1997)

    Article  Google Scholar 

  2. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22(5), 563–591 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  4. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  5. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 400, pp. 97–117. The Royal Society (1985)

  6. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 439, pp. 553–558. The Royal Society (1992)

  7. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  8. Benjamin, S., Westmoreland, M.D.: Modal quantum theory. Found. Phys. 42(7), 918–925 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ellerman, D.: Quantum mechanics over sets. arXiv:1310.8221v1 [quant-ph]

  10. Hanson, A.J., Ortiz, G., Sabry, A., Tai, Y.-T.: Geometry of discrete quantum computing. J. Phys. A Math. Theor. 46(18), 185301 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Hanson, A.J., Ortiz, G., Sabry, A., Tai, Y.-T.: Discrete quantum theories. J. Phys. A Math. Theor. 47(11), 115305 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Chandrashekar, C.M., Srikanth, R., Laflamme, R.: Optimizing the discrete time quantum walk using a su(2) coin. Phys. Rev. A 77, 032326 (2008)

    Article  ADS  Google Scholar 

  13. Lloyd, S., Dreyer, O.: The universal path integral. Quant. Inf. Process. 15(2), 959–967 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Long, G.-L.: General quantum interference principle and duality computer. Commun. Theor. Phys. 45(5), 825 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. Long, G.-L., Liu, Y.: Duality computing in quantum computers. Commun. Theor. Phys. 50(6), 1303 (2008)

    Article  ADS  Google Scholar 

  16. Long, G.-L., Liu, Y., Wang, C.: Allowable generalized quantum gates. Commun. Theor. Phys. 51(1), 65 (2009)

    Article  ADS  MATH  Google Scholar 

  17. Gudder, S.: Mathematical theory of duality quantum computers. Quant. Inf. Process. 6(1), 37–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Long, G.-L.: Mathematical theory of the duality computer in the density matrix formalism. Quant. Inf. Process. 6(1), 49–54 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Wei, S.-J., Long, G.-L.: Duality quantum computer and the efficient quantum simulations. Quant. Inf. Process. 15(3), 1189–1212 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Lomonaco, S.J.: How to build a device that cannot be built. Quant. Inf. Process. 15(3), 1043–1056 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kitaev, A.Y., Shen, A., Vyalyi, M.N.: Classical and Quantum Computation, vol. 47. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  22. Oscar, B. P., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: On universal and fault-tolerant quantum computing: a novel basis and a new constructive proof of universality for shor’s basis. In: 40th Annual Symposium on Foundations of Computer Science, New York City, NY, USA (1999)

  23. Shi, Y.: Both toffoli and controlled-not need little help to do universal quantum computing. Quant. Inf. Comput. 3(1), 84–92 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Aharonov, D.: A simple proof that toffoli and hadamard are quantum universal. arXiv:quant-ph/0301040 (2003)

  25. Kliuchnikov, V., Maslov, D., Mosca, M.: Fast and efficient exact synthesis of single qubit unitaries generated by Clifford and t gates. Quant. Inf. Comput. 13(7–8), 607–630 (2013)

    MathSciNet  Google Scholar 

  26. Yaakov, S., Chai, W.D., Xie, N.: Improving ancilla states for quantum computation. Quant. Inf. Process. 15(4), 1445–1453 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Gatti, L. N., García-López, J.: Geometría de estados discretos en computación cuántica. In: 10th Andalusian Meeting on Discrete Mathematics, La Línea de la Concepción (Cádiz, Spain) (2017)

  28. Lacalle, J., Gatti, L. N.: Extended Lagrange’s four-square theorem. J. Eur. Math. Soc. (submitted) (2018)

  29. Giri, P.R., Korepin, V.E.: A review on quantum search algorithms. Quant. Inf. Process. 16(12), 315 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  31. Long, G.-L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001)

    Article  ADS  Google Scholar 

  32. Grosswald, E.: Representations of Integers as Sums of Squares. Springer, New York (2012)

    MATH  Google Scholar 

  33. Giles, B., Selinger, P.: Exact synthesis of multiqubit Clifford+t circuits. Phys. Rev. A 87(3), 032332 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura N. Gatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatti, L.N., Lacalle, J. A model of discrete quantum computation. Quantum Inf Process 17, 192 (2018). https://doi.org/10.1007/s11128-018-1956-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1956-0

Keywords

Navigation