Skip to main content
Log in

Direct measure of genuine tripartite entanglement independent from bipartite constructions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A new and direct measure (without bipartite measures) of genuine entanglement in tripartite systems based on the volume of the negative part of the Wigner function is proposed. We analyze comparatively this quantity and the different types of entanglement present in two major classes (GHZ and W classes) formed in the coherent state basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It is ought to mention that due to the fact that the coherent states defined in (4) are not mutually orthogonal, these states are not maximally entangled as is the case with GHZ and W states defined using orthogonal bases; they become so, for very large values of the amplitude \(\alpha \).

References

  1. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34(35), 6899 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  MATH  ADS  Google Scholar 

  3. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40(5), 749 (1932)

    Article  MATH  ADS  Google Scholar 

  5. Tatarskii, V.I.: The wigner representation of quantum mechanics. Phys. Usp. 26(4), 311–327 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  6. Wootters, W.K.: A wigner-function formulation of finite-state quantum mechanics. Ann. Phys. 176(1), 1–21 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. Banaszek, K., Wódkiewicz, K.: Nonlocality of the Einstein–Podolsky–Rosen state in the wigner representation. Phys. Rev. A 58(6), 4345 (1998)

    Article  ADS  Google Scholar 

  8. Hillery, M., O’Connell, R.F., Scully, M.O., Wigner, E.: Distribution functions in physics: fundamentals. Phys. Rep. 106(3), 121–167 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  9. Thapliyal, A.V.: Multipartite pure-state entanglement. Phys. Rev. A 59(5), 3336 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dür, W., Vidal, Cirac, J.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  12. Galvao, E.F., Plenio, M.B., Virmani, S.: Tripartite entanglement and quantum relative entropy. J. Phys. A Math. Gen. 33(48), 8809 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)

    Article  ADS  Google Scholar 

  14. Kenfack, A., Życzkowski, K.: Negativity of the wigner function as an indicator of non-classicality. J. Opt. B Quantum Semiclassical Opt. 6(10), 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. Genoni, M.G., Paris, M.G.A.: Quantifying non-gaussianity for quantum information. Phys. Rev. A 82(5), 052341 (2010)

    Article  ADS  Google Scholar 

  16. Wenger, J., Tualle-Brouri, R.: Non-gaussian statistics from individual pulses of squeezed light. Phys. Rev. Lett. 92(15), 153601 (2004)

    Article  ADS  Google Scholar 

  17. Braunstein, S.L., Kimble, H.: Teleportation of continuous quantum variables. In: Quantum Information with Continuous Variables, pp. 67–75. Springer (1998)

  18. Siyouri, F., El Baz, M., Hassouni, Y.: The negativity of wigner function as a measure of quantum correlations. Quantum Inf. Process. 15(10), 4237–4252 (2016)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Mintert, F., Carvalho, A., Kuś, M., Buchleitner, A.: Measures and dynamics of entangled states. Phys. Rep. 415(4), 207–259 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. Sanders, B.C.: Review of entangled coherent states. J. Phys. A Math. Theor. 45(24), 244002 (2012)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Gerry, C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  23. Ferraro, A., Paris, M.: Nonclassicality criteria from phase-space representations and information-theoretical constraints are maximally inequivalent. Phys. Rev. Lett. 108(26), 260403 (2012)

    Article  ADS  Google Scholar 

  24. Dodonov, V.V.: Nonclassical’states in quantum optics: asqueezed’review of the first 75 years. J. Opt. B Quantum Semiclassical Opt. 4(1), R1 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  25. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74(20), 4083 (1995)

    Article  ADS  Google Scholar 

  26. Wu, H., Fan, H.: Two-mode Wigner operator in \(<\eta |\) representation. Mod. Phys. Lett. B 11(13), 549–554 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  27. Jiang, N.: The n-partite entangled wigner operator and its applications in wigner function. J. Opt. B: Quantum Semiclassical Opt. 7(9), 264 (2005)

    Article  ADS  Google Scholar 

  28. Forcer, T., Hey, A., Ross, D.A., Smith, P.: Superposition, entanglement and quantum computation. Quantum Inf. Comput. 2(2), 97–116 (2002)

    MATH  MathSciNet  Google Scholar 

  29. Smithey, D.T., Beck, M., Raymer, M., Faridani, A.: Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70(9), 1244 (1993)

    Article  ADS  Google Scholar 

  30. Dunn, T., Walmsley, I., Mukamel, S.: Experimental determination of the quantum-mechanical state of a molecular vibrational mode using fluorescence tomography. Phys. Rev. Lett. 74(6), 884 (1995)

    Article  ADS  Google Scholar 

  31. Banaszek, K., Radzewicz, C., Wódkiewicz, K., Krasiński, J.S.: Direct measurement of the wigner function by photon counting. Phys. Rev. A 60(1), 674 (1999)

    Article  ADS  Google Scholar 

  32. Lougovski, P., Solano, E., Zhang, Z., Walther, H., Mack, H., Schleich, W.P.: Fresnel representation of the wigner function: an operational approach. Phys. Rev. Lett. 91(1), 010401 (2003)

    Article  ADS  Google Scholar 

  33. Banaszek, K., Wódkiewicz, K.: Direct probing of quantum phase space by photon counting. Phys. Rev. Lett. 76(23), 4344 (1996)

    Article  ADS  Google Scholar 

  34. Leonhardt, U.: Measuring the Quantum State of Light, vol. 22. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Ziane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziane, M., El Baz, M. Direct measure of genuine tripartite entanglement independent from bipartite constructions. Quantum Inf Process 17, 196 (2018). https://doi.org/10.1007/s11128-018-1957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1957-z

Keywords

Navigation