Abstract
We study a two-qutrit system which is described by the Bose–Hubbard Hamiltonian with two external magnetic fields. The entanglement (through the negativity) and quantum correlation (through the geometric discord) between the qutrits are calculated as functions of the magnetic field (B), the temperature (T), the linear and nonlinear coupling constants among two spins (J and K). Then, we compare the effect of these parameters on entanglement and quantum correlation of this system. For some values of system parameters, we show that the negativity is zero while, the geometric discord is nonzero. Moreover, we investigate the effect of finite external magnetic fields direction on these measures. This study leads to some new and interesting results as well.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)
Zou, H.M., Fang, M.F.: Discord and entanglement in non-Markovian environments at finite temperatures. Chin. Phys. B 25, 090302 (2016)
You-Neng, G., Mao-Fa, F., Xiang, L., Bai-Yuan, Y.: Dynamics of quantum discord in a two-qubit system under classical noise. Chin. Phys. B 23, 034204 (2014)
Werlang, T., Souza, S., Fanchini, F.F., Boas, C.V.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)
Jaghouri, H., Sarbishaei, M., Javidan, K.: Evolution of entropy in different types of non-Markovian three-level systems: single reservoir vs. two independent reservoirs. Pramana 86, 997 (2016)
Guo, Y.N., Fang, M.F., Wang, G.Y., Zeng, K.: Distillability sudden death and sudden birth in a two-qutrit system under decoherence at finite temperature. Quantum Inf. Process. 15, 2851 (2016)
Jiang, H., Mao-Fa, F., Bai-Yuan, Y., Xiang, L.: Distillability sudden death in a two qutrit systems under a thermal reservoir. Chin. Phys. B 21, 084205 (2012)
Caves, C.M., Milburn, G.J.: Qutrit entanglement. Opt. Commun. 179, 439 (2000)
Xiao, X., Li, Y.L.: Protecting qutrit–qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)
Yan, X.Q., Liu, G.H., Chee, J.: Sudden change in quantum discord accompanying the transition from bound to free entanglement. Phys. Rev. A 87, 022340 (2013)
Jaghouri, H., Sarbishaei, M., Javidan, K.: Thermal entanglement and lower bound of the geometric discord for a two-qutrit system with linear coupling and nonuniform external magnetic field. Quantum Inf. Process. 16, 124 (2017)
Yuan, Y.L., Hou, X.W.: Thermal geometric discords in a two-qutrit system. Int. J. Quantum Inf. 14, 1650016 (2016)
Hou, X.W., Lei, X.F., Chen, B.: Thermal quantum and classical correlations in a two-qutrit system. Eur. Phys. J. D 67, 1 (2013)
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T.W., Bloch, I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)
Yip, S.K.: Dimer state of spin-1 bosons in an optical lattice. Phys. Rev. Lett. 90, 250402 (2003)
Zhang, G.F., Li, S.S.: The effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system. Opt. Commun. 260, 347 (2006)
Zhang, G.F., Li, S.S., Liang, J.Q.: Thermal entanglement in spin-1 biparticle system. Opt. Commun. 245, 457 (2005)
Scarola, V.W., Sarma, S.D.: Quantum phases of the extended Bose–Hubbard Hamiltonian: possibility of a supersolid state of cold atoms in optical lattices. Phys. Rev. Lett. 95, 033003 (2005)
Jaksch, D., Bruder, C., Cirac, J.I., Gardiner, C.W., Zoller, P.: Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998)
Sargolzahi, I., Mirafzali, S.Y., Sarbishaei, M.: Thermal entanglement in a two-qutrit system with nonlinear coupling under nonuniform external magnetic field. Int. J. Quantum Inf. 6, 867 (2008)
Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Galve, F., Giorgi, G.L., Zambrini, R.: Orthogonal measurements are almost sufficient for quantum discord of two qubits. EPL 96, 40005 (2011)
Li, G., Liu, Y., Tang, H., Yin, X., Zhang, Z.: Analytic expression of quantum correlations in qutrit Werner states undergoing local and nonlocal unitary operations. Quantum Inf. Process. 14, 559 (2015)
Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)
Bellomo, B., Franco, R.L., Compagno, G.: Dynamics of geometric and entropic quantifiers of correlations in open quantum systems. Phys. Rev. A 86, 012312 (2012)
Galve, F., Plastina, F., Paris, M.G., Zambrini, R.: Discording power of quantum evolutions. Phys. Rev. Lett. 110, 010501 (2013)
Altintas, F., Eryigit, R.: Creation of quantum correlations between two atoms in a dissipative environment from an initial vacuum state. Phys. Lett. A 376, 1791 (2012)
Acknowledgements
This work was supported by QUT under a Grant Number 10799.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Unlike the case of parallel magnetic fields, for antiparallel case we cannot write eigenstates and eigenvalues in explicit forms. Hence we derive them in two special cases as \( K<<J \) and \( K>>J\).
The eigenvalues in the case of \( K<<J \) are
where we have defined \(\eta \equiv \bigg (-36\,{B}^{2}J+10\,{J}^{3}+ 3\,\sqrt{-192\,{B}^{6}-192\,{J}^{2}{B}^{4}- 276\,{J}^{4}{B}^{2}-27\,{J}^{6}}\bigg )^\frac{1}{3}\), \(\delta \equiv \frac{-\frac{4}{3}B^2-\frac{7}{9}J^2}{\eta }\), while corresponding eigenstates are
The eigenvalues in the case of \( K>>J \) are
where \(\mu \equiv (27K^3+6\sqrt{-48B^6-108K^2B^4-81K^4B^2})^\frac{1}{3}\), \( \nu \equiv -\frac{\frac{4}{3}B^2+K^2}{\mu }\) and the corresponding eigenstates are
Rights and permissions
About this article
Cite this article
Jaghouri, H., Nazifkar, S., Jafarzadeh, H. et al. Thermal quantum correlation and entanglement in the Bose–Hubbard Hamiltonian. Quantum Inf Process 17, 284 (2018). https://doi.org/10.1007/s11128-018-1961-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1961-3