Skip to main content
Log in

Thermal quantum correlation and entanglement in the Bose–Hubbard Hamiltonian

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study a two-qutrit system which is described by the Bose–Hubbard Hamiltonian with two external magnetic fields. The entanglement (through the negativity) and quantum correlation (through the geometric discord) between the qutrits are calculated as functions of the magnetic field (B), the temperature (T), the linear and nonlinear coupling constants among two spins (J and K). Then, we compare the effect of these parameters on entanglement and quantum correlation of this system. For some values of system parameters, we show that the negativity is zero while, the geometric discord is nonzero. Moreover, we investigate the effect of finite external magnetic fields direction on these measures. This study leads to some new and interesting results as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  2. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  3. Zou, H.M., Fang, M.F.: Discord and entanglement in non-Markovian environments at finite temperatures. Chin. Phys. B 25, 090302 (2016)

    Article  ADS  Google Scholar 

  4. You-Neng, G., Mao-Fa, F., Xiang, L., Bai-Yuan, Y.: Dynamics of quantum discord in a two-qubit system under classical noise. Chin. Phys. B 23, 034204 (2014)

    Article  ADS  Google Scholar 

  5. Werlang, T., Souza, S., Fanchini, F.F., Boas, C.V.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  6. Jaghouri, H., Sarbishaei, M., Javidan, K.: Evolution of entropy in different types of non-Markovian three-level systems: single reservoir vs. two independent reservoirs. Pramana 86, 997 (2016)

    Article  ADS  Google Scholar 

  7. Guo, Y.N., Fang, M.F., Wang, G.Y., Zeng, K.: Distillability sudden death and sudden birth in a two-qutrit system under decoherence at finite temperature. Quantum Inf. Process. 15, 2851 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Jiang, H., Mao-Fa, F., Bai-Yuan, Y., Xiang, L.: Distillability sudden death in a two qutrit systems under a thermal reservoir. Chin. Phys. B 21, 084205 (2012)

    Article  ADS  Google Scholar 

  9. Caves, C.M., Milburn, G.J.: Qutrit entanglement. Opt. Commun. 179, 439 (2000)

    Article  ADS  Google Scholar 

  10. Xiao, X., Li, Y.L.: Protecting qutrit–qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  11. Yan, X.Q., Liu, G.H., Chee, J.: Sudden change in quantum discord accompanying the transition from bound to free entanglement. Phys. Rev. A 87, 022340 (2013)

    Article  ADS  Google Scholar 

  12. Jaghouri, H., Sarbishaei, M., Javidan, K.: Thermal entanglement and lower bound of the geometric discord for a two-qutrit system with linear coupling and nonuniform external magnetic field. Quantum Inf. Process. 16, 124 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Yuan, Y.L., Hou, X.W.: Thermal geometric discords in a two-qutrit system. Int. J. Quantum Inf. 14, 1650016 (2016)

    Article  Google Scholar 

  14. Hou, X.W., Lei, X.F., Chen, B.: Thermal quantum and classical correlations in a two-qutrit system. Eur. Phys. J. D 67, 1 (2013)

    Article  Google Scholar 

  15. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T.W., Bloch, I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  16. Yip, S.K.: Dimer state of spin-1 bosons in an optical lattice. Phys. Rev. Lett. 90, 250402 (2003)

    Article  ADS  Google Scholar 

  17. Zhang, G.F., Li, S.S.: The effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system. Opt. Commun. 260, 347 (2006)

    Article  ADS  Google Scholar 

  18. Zhang, G.F., Li, S.S., Liang, J.Q.: Thermal entanglement in spin-1 biparticle system. Opt. Commun. 245, 457 (2005)

    Article  ADS  Google Scholar 

  19. Scarola, V.W., Sarma, S.D.: Quantum phases of the extended Bose–Hubbard Hamiltonian: possibility of a supersolid state of cold atoms in optical lattices. Phys. Rev. Lett. 95, 033003 (2005)

    Article  ADS  Google Scholar 

  20. Jaksch, D., Bruder, C., Cirac, J.I., Gardiner, C.W., Zoller, P.: Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  21. Sargolzahi, I., Mirafzali, S.Y., Sarbishaei, M.: Thermal entanglement in a two-qutrit system with nonlinear coupling under nonuniform external magnetic field. Int. J. Quantum Inf. 6, 867 (2008)

    Article  Google Scholar 

  22. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. Galve, F., Giorgi, G.L., Zambrini, R.: Orthogonal measurements are almost sufficient for quantum discord of two qubits. EPL 96, 40005 (2011)

    Article  ADS  Google Scholar 

  25. Li, G., Liu, Y., Tang, H., Yin, X., Zhang, Z.: Analytic expression of quantum correlations in qutrit Werner states undergoing local and nonlocal unitary operations. Quantum Inf. Process. 14, 559 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  27. Bellomo, B., Franco, R.L., Compagno, G.: Dynamics of geometric and entropic quantifiers of correlations in open quantum systems. Phys. Rev. A 86, 012312 (2012)

    Article  ADS  Google Scholar 

  28. Galve, F., Plastina, F., Paris, M.G., Zambrini, R.: Discording power of quantum evolutions. Phys. Rev. Lett. 110, 010501 (2013)

    Article  ADS  Google Scholar 

  29. Altintas, F., Eryigit, R.: Creation of quantum correlations between two atoms in a dissipative environment from an initial vacuum state. Phys. Lett. A 376, 1791 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by QUT under a Grant Number 10799.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakimeh Jaghouri.

Appendix

Appendix

Unlike the case of parallel magnetic fields, for antiparallel case we cannot write eigenstates and eigenvalues in explicit forms. Hence we derive them in two special cases as \( K<<J \) and \( K>>J\).

The eigenvalues in the case of \( K<<J \) are

$$\begin{aligned} E_1= & {} - \frac{1}{6}\eta +\frac{3}{2}\delta -\frac{2}{3}J -\frac{1}{2}i\sqrt{3}\left( \frac{1}{3}\eta +3\delta \right) ,\nonumber \\ E_2= & {} - \frac{1}{6}\eta +\frac{3}{2}\delta -\frac{2}{3}J +\frac{1}{2}i\sqrt{3}\left( \frac{1}{3}\eta +3\delta \right) ,\nonumber \\ E_3= & {} \frac{1}{3}\eta -3\delta -\frac{2}{3}J,\nonumber \\ E_{4,5}= & {} - \sqrt{B^2+J^2},\nonumber \\ E_{6,7}= & {} \sqrt{B^2+J^2}\,\, \hbox { and}\nonumber \\ E_{8,9}= & {} J, \end{aligned}$$
(23)

where we have defined \(\eta \equiv \bigg (-36\,{B}^{2}J+10\,{J}^{3}+ 3\,\sqrt{-192\,{B}^{6}-192\,{J}^{2}{B}^{4}- 276\,{J}^{4}{B}^{2}-27\,{J}^{6}}\bigg )^\frac{1}{3}\), \(\delta \equiv \frac{-\frac{4}{3}B^2-\frac{7}{9}J^2}{\eta }\), while corresponding eigenstates are

$$\begin{aligned} {\vert }{\varphi _1}{\rangle }= & {} \frac{E_1^2+2BE_1+JE_1-J^2}{J^2}{\vert }{1,-1}{\rangle }\nonumber \\&\quad +\,\frac{JE_1+2B}{J}{\vert }{0,0}{\rangle }+{\vert }{-1,1}{\rangle },\nonumber \\ {\vert }{\varphi _2}{\rangle }= & {} \frac{E_2^2+2BE_2+JE_2-J^2}{J^2}{\vert }{1,-1}{\rangle }\nonumber \\&\quad +\,\frac{E_2+J+2B}{J}{\vert }{0,0}{\rangle }+{\vert }{-1,1}{\rangle },\nonumber \\ {\vert }{\varphi _3}{\rangle }= & {} \frac{E_3^2+2BE_3+JE_3-J^2}{J^2}{\vert }{1,-1}{\rangle }\nonumber \\&\quad +\,\frac{E_3+J+2B}{J}{\vert }{0,0}{\rangle }+{\vert }{-1,1}{\rangle },\nonumber \\ {\vert }{\varphi _4}{\rangle }= & {} \frac{E_{4,5}+B}{J}{\vert }{0,-1}{\rangle }+{\vert }{-1,0}{\rangle },\nonumber \\ {\vert }{\varphi _5}{\rangle }= & {} \frac{E_{4,5}+B}{J}{\vert }{1,0}{\rangle }+{\vert }{0,1}{\rangle },\nonumber \\ {\vert }{\varphi _6}{\rangle }= & {} \frac{E_{6,7}+B}{J}{\vert }{0,-1}{\rangle }+{\vert }{-1,0}{\rangle },\nonumber \\ {\vert }{\varphi _7}{\rangle }= & {} \frac{E_{6,7}+B}{J}{\vert }{1,0}{\rangle }+{\vert }{0,1}{\rangle },\nonumber \\ {\vert }{\varphi _8}{\rangle }= & {} {\vert }{-1,-1}{\rangle }\quad \hbox {and} \nonumber \\ {\vert }{\varphi _9}{\rangle }= & {} {\vert }{1,1}{\rangle }. \end{aligned}$$
(24)

The eigenvalues in the case of \( K>>J \) are

$$\begin{aligned} E_{1,2}= & {} K+B,\nonumber \\ E_{3,4}= & {} -B+K,\nonumber \\ E_5= & {} \frac{1}{3}\mu -3 \nu +2 K,\nonumber \\ E_{6}= & {} -\,\frac{1}{6}\mu +\frac{3}{2}\nu +2K +\frac{1}{2}i\sqrt{3}\left( \frac{1}{3}\mu +3\nu \right) ,\nonumber \\ E_{7}= & {} -\,\frac{1}{6}\mu +\frac{3}{2}\nu +2K-\frac{1}{2}i\sqrt{3}\left( \frac{1}{3}\mu +3\nu \right) \,\,\hbox {and} \nonumber \\ E_{8,9}= & {} K. \end{aligned}$$
(25)

where \(\mu \equiv (27K^3+6\sqrt{-48B^6-108K^2B^4-81K^4B^2})^\frac{1}{3}\), \( \nu \equiv -\frac{\frac{4}{3}B^2+K^2}{\mu }\) and the corresponding eigenstates are

$$\begin{aligned} {\vert }{\varphi _1}{\rangle }= & {} {\vert }{1,0}{\rangle },\nonumber \\ {\vert }{\varphi _2}{\rangle }= & {} {\vert }{0,-1}{\rangle },\nonumber \\ {\vert }{\varphi _3}{\rangle }= & {} {\vert }{0,1}{\rangle },\nonumber \\ {\vert }{\varphi _4}{\rangle }= & {} {\vert }{-1,0}{\rangle },\nonumber \\ {\vert }{\varphi _5}{\rangle }= & {} -\,\frac{-2BE_5-E_5^2+5E_5K-4K^2+6BK}{2BK}{\vert }{1,-1}{\rangle }\nonumber \\&\quad -\,\frac{2BK-E_5^2+5E_5K+4B^2-4K^2}{2BK}{\vert }{0,0}{\rangle }+{\vert }{-1,1}{\rangle }, \nonumber \\ {\vert }{\varphi _6}{\rangle }= & {} -\,\frac{-2BE_6-E_6^2+5E_6K-4K^2+6BK}{2BK}{\vert }{1,-1}{\rangle }\nonumber \\&\quad -\,\frac{2BK-E_6^2+5E_6K+4B^2-4K^2}{2BK}{\vert }{0,0}{\rangle }+{\vert }{-1,1}{\rangle },\nonumber \\ {\vert }{\varphi _7}{\rangle }= & {} -\frac{-2BE_7-E_7^2+5E_7K-4K^2+6BK}{2BK}{\vert }{1,-1}{\rangle }\nonumber \\&\quad -\,\frac{2BK-E_7^2+5E_7K+4B^2-4K^2}{2BK}{\vert }{0,0}{\rangle }+{\vert }{-1,1}{\rangle }, \nonumber \\ {\vert }{\varphi _8}{\rangle }= & {} {\vert }{-1,-1}{\rangle }\,\,\hbox {and}\nonumber \\ {\vert }{\varphi _9}{\rangle }= & {} {\vert }{1,1}{\rangle }. \end{aligned}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaghouri, H., Nazifkar, S., Jafarzadeh, H. et al. Thermal quantum correlation and entanglement in the Bose–Hubbard Hamiltonian. Quantum Inf Process 17, 284 (2018). https://doi.org/10.1007/s11128-018-1961-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1961-3

Keywords

Navigation