Abstract
Originally introduced as the difference between two possible forms of quantum mutual information, quantum discord has posteriorly been shown to admit a formulation according to which it measures a distance between the state under scrutiny and the closest projectively measured (non-discordant) state. Recently, it has been shown that quantum discord results in higher values when projective measurements are substituted by weak measurements. This sounds paradoxical since weaker measurements should imply weaker disturbance and, thus, a smaller distance. In this work, we solve this puzzle by presenting a quantifier and an underlying interpretation for what we call weak quantum discord. As a by-product, we introduce the notion of symmetrical weak quantum discord.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Of course, the WQD also vanishes for \(\varepsilon \rightarrow 0\), but this trivial limit is not included in the statement of Theorem 1.
Of course, the SyWQD will also vanishes for \((\varepsilon ',\varepsilon )\rightarrow (0,0)\).
References
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555–563 (1935)
Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)
Horodecki, R., Horodecki, P., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Galindo, A., Martín-Delgado, M.A.: Information and computation: classical and quantum aspects. Rev. Mod. Phys. 74, 347 (2002)
Buhrman, H., Cleve, R., Massar, S., de Wolf, R.: Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665 (2010)
Popescu, S.: Bell’s inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797 (1994)
Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)
Angelo, R.M., Ribeiro, A.D.: Wave-particle duality: an information-based approach. Found. Phys. 45, 1407 (2015)
Bilobran, A.L.O., Angelo, R.M.: A measure of physical reality. Europhys. Lett. 112, 40005 (2015)
Dieguez, P.R., Angelo, R.M.: Information-reality complementarity: the role of measurements and quantum reference frames. Phys. Rev. A 97, 022107 (2018)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 17901 (2001)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)
Céleri, L.C., Maziero, J., Serra, R.M.: Theoretical and experimental aspects of quantum discord and related measures. Int. J. Quantum Inf. 9, 1837–1873 (2011)
Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen Paradox. Phys. Rev. Lett. 98, 140402 (2007)
Cavalcanti, E.G., Jones, S.J., Wiseman, H.M., Reid, M.D.: Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox. Phys. Rev. A 80, 032112 (2009)
Costa, A.C.S., Angelo, R.M.: Quantification of Einstein-Podolski-Rosen steering for two-qubit states. Phys. Rev. A 93, 020103(R) (2016)
Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)
Rossignoli, R., Canosa, N., Ciliberti, L.: Generalized entropic measures of quantum correlations. Phys. Rev. A 82, 052342 (2010)
Costa, A.C.S., Angelo, R.M.: Bayes’ rule, generalized discord, and nonextensive thermodynamics. Phys. Rev. A 87, 032109 (2013)
Maudlin, T.: In: Hull, D., Forbes, M., Okruhlik, K. (eds.) Proceedings of the 1992 Meeting of the Philosophy of Science Association. Philosophy of Science Association, East Lansing, MI, 1992, vol. 1, pp. 404–417 (1992)
Brassard, G., Cleve, R., Tapp, A.: Cost of exactly simulating quantum entanglement with classical communication. Phys. Rev. Lett. 83, 1874 (1999)
Steiner, M.: Towards quantifying non-local information transfer: finite-bit non-locality. Phys. Lett. A 270, 239 (2000)
Kaszlikowski, D., Gnacinski, P., Zukowski, M., Miklaszewski, W., Zeilinger, A.: Violations of local realism by two entangled \(N\)-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418 (2000)
Bacon, D., Toner, B.F.: Bell inequalities with auxiliary communication. Phys. Rev. Lett. 90, 157904 (2003)
Branciard, C., Gisin, N.: Quantifying the nonlocality of Greenberger-Horne-Zeilinger quantum correlations by a bounded communication simulation protocol. Phys. Rev. Lett. 107, 020401 (2011)
Laskowski, W., Ryu, J., Zukowsky, M.: Noise resistance of the violation of local causality for pure three-qutrit entangled states. J. Phys. A 47, 424019 (2014)
Fonseca, E.A., Parisio, F.: Measure of nonlocality which is maximal for maximally entangled qutrits. Phys. Rev. A 92, 030101(R) (2015)
Costa, A.C.S., Beims, M.W., Angelo, R.M.: Generalized discord, entanglement, Einstein-Podolsky-Rosen steering, and Bell nonlocality in two-qubit systems under (non-)Markovian channels: hierarchy of quantum resources and chronology of deaths and births. Physica A (Amsterdam, Neth.) 461, 469 (2016)
Gomes, V.S., Angelo, R.M.: Nonanomalous realism-based measure of nonlocality. Phys. Rev. A 97, 012123 (2018)
Modi, K., Paterek, T., Son, W., Vedral, V.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)
Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1998)
Aharonov, Y., Cohen, E., Elitzur, A.C.: Foundations and applications of weak quantum measurements. Phys. Rev. A 89, 052105 (2014)
Oreshkov, O., Brun, T.A.: Weak measurements are universal. Phys. Rev. Lett. 95, 1104909 (2005)
Li, L., Wang, Q.W., Shen, S.Q., Li, M.: Geometric measure of quantum discord with weak measurements. Quantum Inf. Process. 15, 291–300 (2016)
Singh, U., Pati, A.K.: Quantum discord with weak measurements. Ann. Phys. 343, 141–152 (2014)
Wang, Y.K., Ma, T., Fan, H., Fei, S.M., Wang, Z.X.: Super-quantum correlation and geometry for Bell-diagonal states with weak measurements. Quantum Inf. Process. 13, 283–297 (2014)
Hu, M.L., Fan, H., Tian, D.P.: Role of weak measurements on states ordering and monogamy of quantum correlation. Int. J. Theor. Phys. 54, 62–71 (2015)
Li, T., Ma, T., Wang, Y., Fei, S., Wang, Z.: Super quantum discord for X-type states. Int. J. Theor. Phys. 54, 680–688 (2015)
Jing, N., Yu, B.: Super quantum discord for general two qubit X states. Quantum Inf. Process. 16, 99 (2017)
Xiang, M., Jing, J.: Quantum discord and inferior "geometric discord" based on weak measurement in noninertial frames. J. Quantum Inf. Sci. 4, 54 (2014)
Vidal, G.: Entanglement monotones. J. Mod. Opt. 47, 355 (2000)
Brodutch, A., Modi, K.: Criteria for measures of quantum correlations. Quantum Inf. Comput. 12, 0721 (2012)
Acknowledgements
P. R. Dieguez and R. M. Angelo, respectively, acknowledge financial support from the Brazilian Agencies CAPES and CNPq. This work was partially supported by the National Institute for Science and Technology of Quantum Information (INCT-IQ/CNPq, Brazil).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dieguez, P.R., Angelo, R.M. Weak quantum discord. Quantum Inf Process 17, 194 (2018). https://doi.org/10.1007/s11128-018-1963-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1963-1