Abstract
This paper proposes a new dynamic multiparty quantum direct secret sharing (DQDSS) using mutually unbiased measurements based on generalized GHZ states. Without any unitary operations, an agent can obtain a shadow of the secret by simply performing a measurement on single photons. In the proposed scheme, multiple agents can be added or deleted and the shared secret need not be changed. Our DQDSS scheme has several advantages. The dealer is not required to retain any photons and can further share a predetermined key instead of a random key to the agents. Agents can update their shadows periodically, and the dealer does not need to be online. Furthermore, the proposed scheme can resist not only the existing attacks, but also cheating attacks from dishonest agents. Hence, compared to some famous DQSS schemes, the proposed scheme is more efficient and more practical. Finally, we establish a mathematical model about the efficiency and security of the scheme and perform simulation analyses with different parameters using MATLAB.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Smith, A.: Multi-party quantum computation. Arxiv Cornell University Library (2001)
Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. Quantum Inf. Process. 16, 180 (2017)
Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2011)
Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)
Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21, 98–108 (2014)
Huang, W., Wen, Q.Y., Liu, B., et al.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China-Phys. Mech. Astron. 56, 1670–1678 (2013)
Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16, 70 (2017)
Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2001)
Hillery, M., Buzek, V., Berthiaunie, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1840 (1999)
Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)
Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)
Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)
Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56, 2512–2520 (2017)
Matsumoto, R.: Unitary reconstruction of secret for stabilizer-based quantum secret sharing. Quantum Inf. Process. 16, 202 (2017)
Bai, C.M., Li, Z.H., et al.: Quantum secret sharing using the \(d\)-dimensional GHZ state. Quantum Inf. Process. 16, 59 (2017)
Qin, H.W., Zhu, X.H., Dai, Y.W.: A proactive quantum secret sharing scheme based on GHZ state. Mod. Phys. Lett. B 29, 550165 (2015)
Yu, K.F., et al.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16, 194 (2017)
Fiedler, L., Naaijkens, P., Osborne, T.J.: Jones index, secret sharing and total quantum dimension. New J. Phys. 19, 023039 (2017)
Kogias, I., Xiang, Y., He, Q., et al.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)
Wang, J., Li, L., Peng, H., et al.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)
Chen, X.B., Dou, Z., Xu, G., et al.: A kind of universal quantum secret sharing protocol. Sci. Rep. 7, 39845 (2017)
Xu, T.T., Li, Z.H., et al.: A new improving quantum secret sharing scheme. Int. J. Theor. Phys. 56, 1–10 (2017)
Ahmadi, M., Wu, Y.D., Sanders, B.C.: Relativistic (2, 3)-threshold quantum secret sharing. Phys. Rev. D Part. Fields 96, 065018 (2017)
Abulkasim, H., Hamad, S., et al.: Quantum secret sharing with identity authentication based on Bell states. Int. J. Quantum Inf. 15, 1750023 (2017)
Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.: Dynamic quantum secret sharing. Quantum Inf. Process. 12, 331–344 (2013)
Jia, H.Y., Wen, Q.Y., Gao, F., et al.: Dynamic quantum secret sharing. Phys. Lett. A 376, 1035–1041 (2012)
Chen, Q., Chen, J., Wang, K., Du, J.: Efficient construction of two-dimensional cluster states with probabilistic quantum gates. Phys. Rev. A 73, 012303 (2006)
Wang, T.Y., Li, Y.P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process. 12, 1991–1997 (2013)
Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907–1916 (2014)
Qin, H., Dai, Y.: Dynamic quantum secret sharing by using \(d\)-dimensional GHZ state. Quantum Inf. Process. 16, 64 (2017)
Shi, R.H., Mu, Y., Zhong, H., et al.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)
Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75, 10064–10070 (2007)
Huang, W., Wen, Q.Y., Liu, B., et al.: Quantum anonymous ranking. Phys. Rev. A 89, 87–90 (2014)
Dolev, S., Pitowsky, I., Tamir, B.A.: Quantum secret ballot. Computer Science (2006)
Pittenge, A.O., Rubin, M.H.: Mutually unbiased bases, generalized spin matrices and separability. Linear Algebra Appl. 390, 255–278 (2004)
Jennewein, T., Simon, C., Weihs, G., et al.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000)
Beveratos, A., Brouri, R., Gacoin, T., et al.: Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)
Hughes, R.J., Nordholt, J.E., Derkacs, D., et al.: Practical free-space quantum key distribution over 10 km in daylight, and at night. New J. Phys. 4, 3283–3286 (2002)
Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)
Shi, R.H., Huang, L.S., Yang, W., et al.: Multiparty quantum secret sharing with Bell states and Bell. Opt. Commun. 283, 2476–2480 (2010)
Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Rev. A 349, 53–58 (2006)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Cai, Q.Y., Li, B.W.: Improving the capacity of the Boström–Felbinger protocol. Phys. Rev. A 69, 521–524 (2004)
Barnum, H., Caves, C.M., Fuchs, C.A., et al.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818–2821 (1996)
Acknowledgements
The authors would like to thank the anonymous referees for their very valuable comments that enhance the quality of this paper. This work was supported by the National Natural Science Foundation of China (61602291, 61671280, 11671244) and China Postdoctoral Science Foundation (2018M633456).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Song, Y., Li, Z. & Li, Y. A dynamic multiparty quantum direct secret sharing based on generalized GHZ states. Quantum Inf Process 17, 244 (2018). https://doi.org/10.1007/s11128-018-1970-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1970-2