Skip to main content
Log in

Entropic uncertainty relation under multiple bosonic reservoirs with filtering operator

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the dynamics of quantum-memory-assisted entropic uncertainty relation for an open quantum system of two qubits, which interact independently with their own multiple bosonic reservoirs at zero temperature. It is shown that the entropic uncertainty can be reduced with the increase in the number of reservoirs in both the weak and strong coupling regimes. This indicates a fact that the non-Markovianity may play a positive role in reducing entropic uncertainty. Furthermore, an unusual relation is found between the entropic uncertainty and mixedness of the quantum states. We finally reveal an effective manipulation of entropic uncertainty and mixedness by means of the local filtering operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)

    Article  MATH  ADS  Google Scholar 

  2. Kennard, E.H.: Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 44, 326 (1927)

    Article  MATH  ADS  Google Scholar 

  3. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  4. Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  5. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  6. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  7. Renes, J.M., Boileau, J.C.: Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009)

    Article  ADS  Google Scholar 

  8. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659–662 (2010)

    Article  Google Scholar 

  9. Adabi, F., Haseli, S., Salimi, S.: Reducing the entropic uncertainty lower bound in the presence of quantum memory via LOCC. Europhys. Lett. 115, 60004 (2016)

    Article  ADS  Google Scholar 

  10. Xing, J., Zhang, Y.R., Liu, S., Chang, Y.C., Yue, J.D., Fan, H., Pan, X.Y.: Experimental investigation of quantum entropic uncertainty relations for multiple measurements in pure diamond. Sci. Rep. 7, 2563 (2017)

    Article  ADS  Google Scholar 

  11. Liu, S., Mu, L.Z., Fan, H.: Entropic uncertainty relations for multiple measurements. Phys. Rev. A 91, 042133 (2015)

    Article  ADS  Google Scholar 

  12. Prevedel, R., Hamel, D.R., Colbeck, R., Fisher, K., Resch, K.J.: Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nat. Phys. 7, 757–761 (2011)

    Article  Google Scholar 

  13. Li, C.F., Xu, J.S., Xu, X.Y., Li, K., Guo, G.C.: Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys. 7, 752–756 (2011)

    Article  Google Scholar 

  14. Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)

    Article  ADS  Google Scholar 

  15. Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)

    Article  ADS  Google Scholar 

  16. Hu, M.L., Fan, H.: Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A 87, 022314 (2013)

    Article  ADS  Google Scholar 

  17. Oppenheim, J., Wehner, S.: The uncertainty principle determines the nonlocality of quantum mechanics. Science 330, 1072–1074 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Adabi, F., Salimi, S., Haseli, S.: Tightening the entropic uncertainty bound in the presence of quantum memory. Phys. Rev. A 93, 062123 (2016)

    Article  ADS  Google Scholar 

  19. Pramanik, T., Chowdhury, P., Majumdar, A.S.: Fine-grained lower limit of entropic uncertainty in the presence of quantum memory. Phys. Rev. Lett. 110, 020402 (2013)

    Article  ADS  Google Scholar 

  20. Coles, P.J., Piani, M.: Improved entropic uncertainty relations and information exclusion relations. Phys. Rev. A 89, 022112 (2014)

    Article  ADS  Google Scholar 

  21. Zhang, J., Zhang, Y., Yu, C.S.: Entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. Sci. Rep. 5, 11701 (2015)

    Article  ADS  Google Scholar 

  22. Xiao, Y.L., et al.: Strong entropic uncertainty relations for multiple measurements. Phys. Rev. A 93, 042125 (2016)

    Article  ADS  Google Scholar 

  23. Pati, A.K., et al.: Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86, 042105 (2012)

    Article  ADS  Google Scholar 

  24. Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89, 015002 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  25. Wang, D., et al.: Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir. Sci. Rep. 7, 1066 (2017)

    Article  ADS  Google Scholar 

  26. Huang, A.J., Shi, J.D., Wang, D., Ye, L.: Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations. Quantum Inf. Process. 16, 46 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Xu, Z.Y., Yang, W.L., Feng, M.: Quantum-memory-assisted entropic uncertainty relation under noise. Phys. Rev. A 86, 012113 (2012)

    Article  ADS  Google Scholar 

  28. Bai, X.M., Wang, N., Li, J.Q., Liang, J.Q.: The creation of quantum correlation and entropic uncertainty relation in photonic crystals. Quantum Inf. Process. 15, 2771 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Feng, J., Zhang, Y.Z., Gould, M.D., Fan, H.: Entropic uncertainty relations under the relativistic motion. Phys. Lett. B 726, 527–532 (2013)

    Article  MATH  ADS  Google Scholar 

  30. Feng, J., Zhang, Y.Z., Gould, M.D., Fan, H.: Uncertainty relation in Schwarzschild spacetime. Phys. Lett. B 743, 198–204 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Wang, D., et al.: Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame. Laser Phys. Lett. 14, 055205 (2017)

    Article  ADS  Google Scholar 

  32. Jia, L.J., Tian, Z.H., Jing, J.L.: Entropic uncertainty relation in de Sitter space. Ann. Phys. 353, 37–47 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Luo, S.L.: Quantum uncertainty of mixed states based on skew information. Phys. Rev. A 73, 022324 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  34. Mal, S., Pramanik, T., Majumdar, A.S.: Detecting mixedness of qutrit systems using the uncertainty relation. Phys. Rev. A 87, 012105 (2013)

    Article  ADS  Google Scholar 

  35. Zheng, X., Zhang, G.F.: The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski-Moriya interaction. Quantum Inf. Process. 16, 1 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Zheng, X., Zhang, G.F.: The effects of different quantum feedback types on the tightness of the variance-based uncertainty. Solid State Commun. 254, 26–30 (2017)

    Article  ADS  Google Scholar 

  37. Zheng, X., Zhang, G.F.: Variance-based uncertainty relation for incompatible observers. Quantum Inf. Process. 16, 167 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. He, Z., Yao, C., Wang, Q., Zou, J.: Measuring non-Markovianity based on local quantum uncertainty. Phys. Rev. A 90, 042101 (2014)

    Article  ADS  Google Scholar 

  39. Huang, Z.: Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii–Moriya interaction. Laser Phys. Lett. 15, 025203 (2018)

    Article  ADS  Google Scholar 

  40. Huang, Z.: Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field. Quantum Inf. Process. 17, 73 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  41. Ming, F., Wang, D., Huang, A.J., Sun, W.Y., Ye, L.: Decoherence effect on quantum-memory-assisted entropic uncertainty relations. Quantum Inf. Process. 17, 9 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  42. Zhang, S.Y., Fang, M.F., Yu, M.: Controlling of entropic uncertainty in qubits system under the generalized amplitude damping channel via weak measurements. Int. J. Theor. Phys. 55, 1824–1832 (2016)

    Article  MATH  Google Scholar 

  43. Yu, M., Fang, M.F.: Controlling the quantum-memory-assisted entropic uncertainty relation by quantum-jump-based feedback control in dissipative environments. Quantum Inf. Process. 16, 213 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Man, Z.X., An, N.B., Xia, Y.J.: Non-Markovianity of a two-level system transversally coupled to multiple bosonic reservoirs. Phys. Rev. A 90, 062104 (2014)

    Article  ADS  Google Scholar 

  45. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  46. Wang, D., et al.: Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field. Laser Phys. Lett. 14, 065203 (2017)

    Article  ADS  Google Scholar 

  47. Michael, S., Ali, A.K.: Defeating entanglement sudden death by a single local filtering. Phys. Rev. A 86, 032304 (2012)

    Article  Google Scholar 

  48. Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151–156 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Metwally, N.: arXiv:1603.01429v1

  50. Huang, C.Y., Ma, W., Wang, D., Ye, L.: How the relativistic motion affect quantum Fisher information and Bell non-locality for multipartite state. Sci. Rep. 7, 38456 (2017)

    Article  ADS  Google Scholar 

  51. Sun, Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  52. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  MATH  ADS  Google Scholar 

  53. Xu, S., He, J., Song, X., Shi, J., Ye, L.: Optimized decoherence suppression of two qubits in independent non-Markovian environments using weak measurement and quantum measurement reversal. Quantum Inf. Process. 14, 755 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grants Nos. 11105087, 61275210, 11275118, 11404198) and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) (Grant No. 2014102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Qi Li.

Appendices

Appendix A: The detailed calculation process of Eq. (13)

Here, we will give a derivation of Eq. (13). By using Eqs. (7) and (12), we can obtain the analytical expression of \([F\otimes I]\rho _{AB}(t)[F\otimes I]^{\dagger }\) as

$$\begin{aligned}{}[F\otimes I]\rho _{AB}(t)[F\otimes I]^{\dagger }=&\,[(\sqrt{1-k}\left| 1\right\rangle \left\langle 1\right| +\sqrt{k}\left| 0\right\rangle \left\langle 0\right| )\otimes I](\rho _{11}(t)\left| 11\right\rangle \left\langle 11\right| \nonumber \\&+\rho _{14}(t)\left| 11\right\rangle \left\langle 00\right| +\rho _{22}(t)\left| 10\right\rangle \left\langle 10\right| \nonumber \\&+\rho _{33}(t)\left| 01\right\rangle \left\langle 01\right| +\rho _{41}(t)\left| 00\right\rangle \left\langle 11\right| \nonumber \\&+\rho _{44}(t)\left| 00\right\rangle \left\langle 00\right| )[(\sqrt{1-k}\left| 1\right\rangle \left\langle 1\right| +\sqrt{k}\left| 0\right\rangle \left\langle 0\right| )\otimes I]^{\dagger }. \end{aligned}$$
(14)

In virtue of the orthogonality relations that \(\langle 1|1\rangle =\langle 0|0\rangle =1\) and \(\langle 0|1\rangle =\langle 1|0\rangle =0\), ones have

$$\begin{aligned}{}[F\otimes I]\rho _{AB}(t)[F\otimes I]^{\dagger }=&\,\rho _{11}(t)(1-k)\left| 11\right\rangle \left\langle 11\right| +\rho _{14}(t)\sqrt{(1-k)k}\left| 11\right\rangle \left\langle 00\right| \nonumber \\&+\rho _{22}(t)(1-k)\left| 10\right\rangle \left\langle 10\right| +\rho _{33}(t)k\left| 01\right\rangle \left\langle 01\right| \nonumber \\&+\rho _{41}(t)\sqrt{(1-k)k}\left| 00\right\rangle \left\langle 11\right| +\rho _{44}(t)k\left| 00\right\rangle \left\langle 00\right| . \end{aligned}$$
(15)

Consequently, the trace of Eq. (15) can be evaluated easily as

$$\begin{aligned} Tr[[F\otimes I]\rho _{AB}(t)[F\otimes I]^{\dagger }]= & {} \rho _{11}(t)(1-k)+\rho _{22}(t)(1-k)\nonumber \\&+\,(\rho _{33}(t)+\rho _{44}(t))k . \end{aligned}$$
(16)

Finally, Eq. (13) is formulated by combining Eqs. (15)–(16) and the expressions of matrix elements in Eq. (7).

Appendix B

As a matter of fact, the time evolution of a single qubit subjected to the multiple bosonic reservoirs [44] can also be expressed by the following quantum dynamical map [53]

$$\begin{aligned}&|0\rangle _{S}|\bar{0}\rangle _{E}\rightarrow |0\rangle _{S}|\bar{0}\rangle _{E},\nonumber \\&|1\rangle _{S}|\bar{0}\rangle _{E}\rightarrow C_{1}(t)|1\rangle _{S}|\bar{0}\rangle _{E}+\sqrt{1-|C_{1}(t)|^{2}}|0\rangle _{S}|\bar{1}\rangle _{E}, \end{aligned}$$
(17)

where \(C_{1}(t)\) is given by Eq. (5). \(|\bar{0}\rangle _{E}\) and \(|\bar{1}\rangle _{E}\) correspond to the vacuum state and the collective state containing only one excited mode of the multiple bosonic reservoirs, respectively.

For two identical quantum objects constrained by the same form of Hamiltonian as Eq. (3), when the global state of qubits A and B with their corresponding reservoirs a and b is prepared initially in

$$\begin{aligned} |\Phi (0)\rangle _{ABab}=|\psi (0)\rangle _{AB}\otimes |\bar{0}\bar{0}\rangle _{ab}, \end{aligned}$$
(18)

we can obtain its joint evolution with the help of Eq. (17), namely,

$$\begin{aligned} |\Phi (t)\rangle _{ABab}= & {} \frac{1}{\sqrt{2}}(|00\bar{0}\bar{0}\rangle +x_{1}|11\bar{0}\bar{0}\rangle +x_{2}|10\bar{0}\bar{1}\rangle +x_{3}|01\bar{1}\bar{0}\rangle \nonumber \\&+\,x_{4}|00\bar{1}\bar{1}\rangle )_{ABab}, \end{aligned}$$
(19)

where \(|\psi (0)\rangle _{AB}\) is the Bell state of Eq. (6), and the relevant parameters in above equation are

$$\begin{aligned} x_{1}=C_{1}(t)^{2}, x_{2}=x_{3}=C_{1}(t)^{2}\sqrt{1-|C_{1}(t)|^{2}},x_{4}=1-|C_{1}(t)|^{2}. \end{aligned}$$
(20)

When the filtering operation is performed on qubit A of the total quantum state \(|\Phi (t)\rangle _{ABab}\), the final state will evolve to

$$\begin{aligned} |\Psi (t)\rangle _{ABab}= & {} \frac{1}{\sqrt{2}}\{\sqrt{1-k}[x_{1}|11\bar{0}\bar{0}\rangle +x_{2}|10\bar{0}\bar{1}\rangle ] +\sqrt{k}[|00\bar{0}\bar{0}\rangle +x_{3}|01\bar{1}\bar{0}\rangle \nonumber \\&+\,x_{4}|00\bar{1}\bar{1}\rangle ]\}_{ABab}. \end{aligned}$$
(21)

By tracing the total evolved state \(|\Phi (t)\rangle _{{ABab}}\) over the unrelated freedoms, the (unnormalized) reduced density matrices for two subsystems read

$$\begin{aligned} \rho _{ab}^{\Phi }=&\, Tr_{AB}[|\Phi (t)\rangle _{{ABab}{ABab}}\langle \Phi (t)|] \nonumber \\ =&\, \frac{1}{2}\{|x_{4}|^{2}|\bar{1}\bar{1}\rangle \langle \bar{1}\bar{1}| +|x_{3}|^{2}|\bar{1}\bar{0}\rangle \langle \bar{1}\bar{0}|+|x_{2}|^{2}|\bar{0} \bar{1}\rangle \langle \bar{0}\bar{1}|+(1+|x_{1}|^{2})|\bar{0}\bar{0}\rangle \langle \bar{0}\bar{0}|\nonumber \\&+x_{4}|\bar{1}\bar{1}\rangle \langle \bar{0}\bar{0}|+x_{4}^{*}|\bar{0}\bar{0}\rangle \langle \bar{1}\bar{1}|\}, \end{aligned}$$
(22)
$$\begin{aligned} \rho _{Ab}^{\Phi }=&\, Tr_{Ba}[|\Phi (t)\rangle _{{ABab}{ABab}}\langle \Phi (t)|] \nonumber \\ =&\, \frac{1}{2}\{|x_{2}|^{2}|1\bar{1}\rangle \langle 1\bar{1}| +|x_{1}|^{2}|1\bar{0}\rangle \langle 1\bar{0}|+|x_{4}|^{2}|0 \bar{1}\rangle \langle 0\bar{1}|+(1+|x_{3}|^{2})|0\bar{0}\rangle \langle 0\bar{0}|\nonumber \\&+x_{2}|1\bar{1}\rangle \langle 0\bar{0}|+x_{2}^{*}|0\bar{0}\rangle \langle 1\bar{1}|\},\end{aligned}$$
(23)
$$\begin{aligned} \rho _{Ba}^{\Phi }=&\, Tr_{Ab}[|\Phi (t)\rangle _{{ABab}{ABab}}\langle \Phi (t)|] \nonumber \\ =&\, \frac{1}{2}\{|x_{3}|^{2}|1\bar{1}\rangle \langle 1\bar{1}| +|x_{1}|^{2}|1\bar{0}\rangle \langle 1\bar{0}|+|x_{4}|^{2}|0\bar{1}\rangle \langle 0\bar{1}| +(1+|x_{2}|^{2})|0\bar{0}\rangle \langle 0\bar{0}|\nonumber \\&+x_{3}|1\bar{1}\rangle \langle 0\bar{0}| +x_{3}^{*}|0\bar{0}\rangle \langle 1\bar{1}|\}, \end{aligned}$$
(24)
$$\begin{aligned} \rho _{Aa}^{\Phi }=&\,Tr_{Bb}[|\Phi (t)\rangle _{{ABab}{ABab}}\langle \Phi (t)|] \nonumber \\ =&\,\frac{1}{2}\{(|x_{1}|^{2}+|x_{2}|^{2})|1\bar{0}\rangle \langle 1\bar{0}| +(|x_{3}|^{2}|+|x_{4}|^{2})|0\bar{1}\rangle \langle 0\bar{1}| +|0\bar{0}\rangle \langle 0\bar{0}|\nonumber \\&+(x_{1}x_{3}^{*}+x_{2}x_{4}^{*}) |1\bar{0}\rangle \langle 0\bar{1}|+(x_{1}^{*}x_{3}+x_{2}^{*}x_{4})|0\bar{1}\rangle \langle 1\bar{0}|\}. \end{aligned}$$
(25)
$$\begin{aligned} \rho _{Bb}^{\Phi }=&\,Tr_{Aa}[|\Phi (t)\rangle _{{ABab}{ABab}}\langle \Phi (t)|]\nonumber \\ =&\,\frac{1}{2}\{[|x_{1}|^{2}+|x_{3}|^{2}]|1\bar{0}\rangle \langle 1\bar{0}| +[|x_{2}|^{2}+|x_{4}|^{2}]|0\bar{1}\rangle \langle 0\bar{1}|+|0\bar{0}\rangle \langle 0\bar{0}|\nonumber \\&+[x_{1}x_{2}^{*}+x_{3}x_{4}^{*}]|1\bar{0}\rangle \langle 0\bar{1}|+[x_{2}x_{1}^{*}+x_{4}x_{3}^{*}]|0\bar{1}\rangle \langle 1\bar{0}|\}. \end{aligned}$$
(26)
$$\begin{aligned} \rho _{AB}^{\Phi }=&\,Tr_{ab}[|\Phi (t)\rangle _{{ABab}{ABab}}\langle \Phi (t)|]\nonumber \\ =&\,\frac{1}{2}\{|x_{1}|^{2}|11\rangle \langle 11| +|x_{3}|^{2}|01\rangle \langle 01|+|x_{2}|^{2}|10\rangle \langle 10|\nonumber \\&+(1+|x_{4}|^{2})|00\rangle \langle 00| +x_{1}^{*}|00\rangle \langle 11|+x_{1}|11\rangle \langle 00|\}. \end{aligned}$$
(27)

Meanwhile, the (unnormalized) reduced density matrices of two subsystems can also be obtained by tracing \(|\Psi \rangle _{ABab}\) over the unrelated freedoms, i.e.,

$$\begin{aligned} \rho _{ab}^{\Psi }=&\,\frac{1}{2}\{k|x_{4}|^{2}|\bar{1}\bar{1}\rangle \langle \bar{1}\bar{1}| +k|x_{3}|^{2}|\bar{1}\bar{0}\rangle \langle \bar{1}\bar{0}|+|x_{2}|^{2}(1-k)|\bar{0} \bar{1}\rangle \langle \bar{0}\bar{1}|\nonumber \\&+(k+(1-k)|x_{1}|^{2})|\bar{0}\bar{0}\rangle \langle \bar{0}\bar{0}| +\sqrt{k}x_{4}|\bar{1}\bar{1}\rangle \langle \bar{0}\bar{0}|+\sqrt{k}x_{4}^{*}|\bar{0}\bar{0}\rangle \langle \bar{1}\bar{1}|\}, \end{aligned}$$
(28)
$$\begin{aligned} \rho _{Ab}^{\Psi }=&\,\frac{1}{2}\{(1-k)|x_{2}|^{2}|1\bar{1}\rangle \langle 1\bar{1}| +(1-k)|x_{1}|^{2}|1\bar{0}\rangle \langle 1\bar{0}|+k|x_{4}|^{2}|0\bar{1}\rangle \langle 0\bar{1}|\nonumber \\&+k(1+|x_{3}|^{2}) |0\bar{0}\rangle \langle 0\bar{0}|+\sqrt{k(1-k)}x_{2}|1\bar{1}\rangle \langle 0\bar{0}|+\sqrt{k(1-k)}x_{2}^{*}|0\bar{0}\rangle \langle 1\bar{1}|\}, \end{aligned}$$
(29)
$$\begin{aligned} \rho _{Ba}^{\Psi }=&\frac{1}{2}\{k|x_{3}|^{2}|1\bar{1}\rangle \langle 1\bar{1}| +(1-k)|x_{1}|^{2}|1\bar{0}\rangle \langle 1\bar{0}|+k|x_{4}|^{2}|0\bar{1}\rangle \langle 0\bar{1}|\nonumber \\&+(k+(1-k)|x_{2}|^{2}) |0\bar{0}\rangle \langle 0\bar{0}|+kx_{3}|1\bar{1}\rangle \langle 0\bar{0}|+kx_{3}^{*}|0\bar{0}\rangle \langle 1\bar{1}|\}, \end{aligned}$$
(30)
$$\begin{aligned} \rho _{Aa}^{\Psi }=&\,\frac{1}{2}\{(1-k)(|x_{1}|^{2}+|x_{2}|^{2})|1\bar{0}\rangle \langle 1\bar{0}| +k(|x_{3}|^{2}+|x_{4}|^{2})|0\bar{1}\rangle \langle 0\bar{1}| +k|0\bar{0}\rangle \langle 0\bar{0}|\nonumber \\&+\sqrt{k(1-k)}(x_{1}x_{3}^{*}+x_{2}x_{4}^{*})|1\bar{0}\rangle \langle 0\bar{1}|+\sqrt{k(1-k)}(x_{1}^{*}x_{3}+x_{2}^{*}x_{4})|0\bar{1}\rangle \langle 1\bar{0}|\}. \end{aligned}$$
(31)
$$\begin{aligned} \rho _{Bb}^{\Psi }=&\,\frac{1}{2}\{[(1-k)|x_{1}|^{2}+k|x_{3}|^{2}]|1\bar{0}\rangle \langle 1\bar{0}| +[(1-k)|x_{2}|^{2}+k|x_{4}|^{2}]|0\bar{1}\rangle \langle 0\bar{1}|\nonumber \\&+k|0\bar{0}\rangle \langle 0\bar{0}| +[(1-k)x_{1}x_{2}^{*}+kx_{3}x_{4}^{*}]|1\bar{0}\rangle \langle 0\bar{1}|+[(1-k)x_{2}x_{1}^{*}+kx_{4}x_{3}^{*}]|0\bar{1}\rangle \langle 1\bar{0}|\}. \end{aligned}$$
(32)

In addition, for the expression of \(\rho _{AB}^{\Psi }\), please see Eq. (15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JQ., Bai, L. & Liang, JQ. Entropic uncertainty relation under multiple bosonic reservoirs with filtering operator. Quantum Inf Process 17, 206 (2018). https://doi.org/10.1007/s11128-018-1973-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1973-z

Keywords

Navigation