Skip to main content
Log in

Conditional displacement interaction in transversal direction from the quantum Rabi model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the realization of conditional displacement interaction in transversal direction from the quantum Rabi model by adjusting parameters of external magnetic fields. The special interaction is derived in the system of qubit(s) coupled to a resonator. We explore the implementation of quantum gates and the generation of superposed coherent states based on the transversal conditional displacement interaction, and consolidate the investigations numerically. We also show the special interaction can be realized by using the quantum Rabi model with qubit–qubit coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Braak, D.: Integrability of the Rabi model. Phys. Rev. Lett. 107, 100401 (2011)

    Article  ADS  Google Scholar 

  2. Rabi, I.I.: On the process of space quantization. Phys. Rev. 49, 324–328 (1936)

    Article  MATH  ADS  Google Scholar 

  3. Rabi, I.I.: Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652–654 (1937)

    Article  MATH  ADS  Google Scholar 

  4. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89C109 (1963)

    Article  Google Scholar 

  5. Thompson, R.J., Rempe, G., Kimble, H.J.: Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132 (1992)

    Article  ADS  Google Scholar 

  6. Boca, A., Miller, R., Birnbaum, K.M., Boozer, A.D., McKeever, J., Kimble, H.J.: Observation of the vacuum Rabi spectrum for one trapped atom. Phys. Rev. Lett. 93, 233603 (2004)

    Article  ADS  Google Scholar 

  7. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Brune, M., Schmidt-Kaler, F., Maali, A., Dreyer, J., Hagley, E., Raimond, J.M., Haroche, S.: Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800 (1996)

    Article  MATH  ADS  Google Scholar 

  9. Forn-Díaz, P., Lisenfeld, J., Marcos, D., García-Ripoll, J.J., Solano, E., Harmans, C.J.P.M., Mooij, J.E.: Observation of the Bloch–Siegert shift in a qubit–oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010)

    Article  ADS  Google Scholar 

  10. Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M.J., García-Ripoll, J.J., Zueco, D., Hümmer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772 (2010)

    Article  Google Scholar 

  11. Yoshihara, F., Fuse, T., Ashhab, S., Kakuyanagi, K., Saito, S., Semba, K.: Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13, 44 (2017)

    Article  Google Scholar 

  12. Günter, G., Anappara, A.A., Hees, J., Sell, A., Biasiol, G., Sorba, L., De Liberato, S., Ciuti, C., Tredicucci, A., Leitenstorfer, A., Huber, R.: Sub-cycle switch-on of ultrastrong light–matter interaction. Nature 458, 178 (2005)

    Article  Google Scholar 

  13. Fedorov, A., Feofanov, A.K., Macha, P., Forn-Díaz, P., Harmans, C.J.P.M., Mooij, J.E.: Strong coupling of a quantum oscillator to a flux qubit at its symmetry point. Phys. Rev. Lett. 105, 060503 (2010)

    Article  ADS  Google Scholar 

  14. Schwartz, T., Hutchison, J.A., Genet, C., Ebbesen, T.W.: Reversible switching of ultrastrong light–molecule coupling. Phys. Rev. Lett. 106, 196405 (2011)

    Article  ADS  Google Scholar 

  15. Goryachev, M., Farr, W.G., Creedon, D.L., Fan, Y., Kostylev, M., Tobar, M.E.: High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl. 2, 054002 (2014)

    Article  ADS  Google Scholar 

  16. Zhang, Q., Lou, M., Li, X., Reno, J.L., Pan, W., Watson, J.D., Manfra, M.J., Kono, J.: Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity-photon. Nat. Phys. 12, 1005 (2016)

    Article  Google Scholar 

  17. Chen, Z., Wang, Y., Li, T., Tian, L., Qiu, Y., Inomata, K., Yoshihara, F., Han, S., Nori, F., Tsai, J.S., You, J.Q.: Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit-quantum-electrodynamics system. Phys. Rev. A 96, 012325 (2017)

    Article  ADS  Google Scholar 

  18. Langford, N.K., Sagastizabal, R., Kounalakis, M., Dickel, C., Bruno, A., Luthi, F., Thoen, D.J., Endo, A., DiCarlo, L.: Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling. Nat. Commun. 8, 1715 (2017)

    Article  ADS  Google Scholar 

  19. Braumüller, J., Marthaler, M., Schneider, A., Stehli, A., Rotzinger, H., Weides, M., Ustinov, A.V.: Analog quantum simulation of the Rabi model in the ultra-strong coupling regime. Nat. Commun. 8, 779 (2017)

    Article  ADS  Google Scholar 

  20. Cárdenas-López, F.A., Albarrán-Arriagada, F., Barrios, G.A., Retamal, J.C., Romero, G.: Incoherent-mediator for quantum state transfer in the ultrastrong coupling regime. Sci. Rep. 7, 4157 (2017)

    Article  ADS  Google Scholar 

  21. Du, L.H., Zhou, X.F., Zhou, Z.W., Zhou, X., Guo, G.C.: Generalized Rabi model in quantum-information processing including the \(\mathbf{A}^{2}\) term. Phys. Rev. A 86, 014303 (2012)

    Article  Google Scholar 

  22. Albarrán-Arriagada, F., Barrios, G.A., Cárdenas-López, F.A., Romero, G., Retamal, J.C.: Generation of higher dimensional entangled states in quantum Rabi systems. J. Phys. Math. Theor. 50, 184001 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Armata, F., Calajo, G., Jaako, T., Kim, M.S., Rabl, P.: Harvesting multiqubit entanglement from ultrastrong interactions in circuit quantum electrodynamics. Phys. Rev. Lett. 119, 183602 (2017)

    Article  ADS  Google Scholar 

  24. Leggett, A.J.: Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. Condens. Matter 14, R415 (2002)

    Article  ADS  Google Scholar 

  25. Armour, A.D., Blencowe, M.P., Schwab, K.C.: Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-Pair Box. Phys. Rev. Lett. 88, 148301 (2002)

    Article  ADS  Google Scholar 

  26. Liao, J.Q., Huang, J.F., Tian, L.: Generation of macroscopic Schrödinger-cat states in qubit–oscillator systems. Phys. Rev. A 93, 033853 (2016)

    Article  ADS  Google Scholar 

  27. Monroe, C., Meekhof, D.M., King, B.E., Wineland, D.J.: A Schrödinger Cat superposition state of an atom. Science 272, 1131 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Haljan, P.C., Brickman, K.A., Deslauriers, L., Lee, P.J., Monroe, C.: Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion. Phys. Rev. Lett. 94, 153602 (2005)

    Article  ADS  Google Scholar 

  29. Yin, Z., Li, T., Zhang, X., Duan, L.M.: Large quantum superpositions of a levitated nanodiamond through spin–optomechanical coupling. Phys. Rev. A 88, 033614 (2013)

    Article  ADS  Google Scholar 

  30. Liu, Y., Wei, L.F., Nori, F.: Preparation of macroscopic quantum superposition states of a cavity field via coupling to a superconducting charge qubit. Phys. Rev. A 71, 063820 (2005)

    Article  ADS  Google Scholar 

  31. Liao, J.Q., Kuang, L.M.: Nanomechanical resonator coupling with a double quantum dot: quantum state engineering. Eur. Phys. J. B 63, 79 (2008)

    Article  ADS  Google Scholar 

  32. Sørensen, A., Mølmer, K.: Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000)

    Article  ADS  Google Scholar 

  33. García-Ripoll, J.J., Zoller, P., Cirac, J.: Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91, 157901 (2003)

    Article  ADS  Google Scholar 

  34. Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, M.W., Jelenkovic, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412 (2003)

    Article  ADS  Google Scholar 

  35. Feng, X.L., Wang, Z., Wu, C., Kwek, L.C., Lai, C.H., Oh, C.H.: Scheme for unconventional geometric quantum computation in cavity QED. Phys. Rev. A 75, 052312 (2007)

    Article  ADS  Google Scholar 

  36. Feng, X.L., Wu, C., Sun, H., Oh, C.H.: Geometric entangling gates in decoherence-free subspaces with minimal requirements. Phys. Rev. Lett. 103, 200501 (2009)

    Article  ADS  Google Scholar 

  37. Billangeon, P.M., Tsai, J.S., Nakamura, Y.: Circuit-QED-based scalable architectures for quantum information processing with superconducting qubits. Phys. Rev. B 91, 094517 (2015)

    Article  ADS  Google Scholar 

  38. Zhu, S.L., Wang, Z.D.: Unconventional geometric quantum computation. Phys. Rev. Lett. 91, 187902 (2003)

    Article  ADS  Google Scholar 

  39. Kirchmair, G., Benhelm, J., Zahringer, F., Gerritsma, R., Roos, C., Blatt, R.: Deterministic entanglement of ions in thermal states of motion. New J. Phys. 11, 023002 (2009)

    Article  ADS  Google Scholar 

  40. Wang, X., Zanardi, P.: Simulation of many-body interactions by conditional geometric phase. Phys. Rev. A 65, 032327 (2002)

    Article  ADS  Google Scholar 

  41. Christian, F.R.: Ion trap quantum gates with amplitude-modulated laser beams. New J. Phys. 10, 013002 (2008)

    Article  Google Scholar 

  42. Romero, G., Ballester, D., Wang, Y.M., Scarani, V., Solano, E.: Ultrafast quantum gates in circuit QED. Phys. Rev. Lett. 108, 120501 (2012)

    Article  ADS  Google Scholar 

  43. Kyaw, T.H., Herrera-Martí, D.A., Solano, E., Romero, G., Kwek, L.C.: Creation of quantum error correcting codes in the ultrastrong coupling regime. Phys. Rev. B 91, 064503 (2015)

    Article  ADS  Google Scholar 

  44. Chilingaryan, S.A., Rodrłguez-Lara, B.M.: The quantum Rabi model for two qubits. J. Phys. A Math. Theor. 46, 335301 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mao, L., Huai, S., Zhang, Y.: The two-qubit quantum Rabi model: inhomogeneous coupling. J. Phys. A Math. Theor. 48, 345302 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Silveri, M.P., Tuorila, J.A., Thuneberg, E.V., Paraoanu, G.S.: Quantum systems under frequency modulation. Rep. Prog. Phys. 80, 056002 (2017)

    Article  ADS  Google Scholar 

  47. Xue, Z.Y., Zhou, J., Wang, Z.D.: Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits. Phys. Rev. A 92, 022320 (2015)

    Article  ADS  Google Scholar 

  48. Strand, J., Ware, M., Beaudoin, F., Ohki, T., Johnson, B., Blais, A., Plourde, B.: First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505(R) (2013)

    Article  ADS  Google Scholar 

  49. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory (Applied Mathematical Sciences). Springer, New York (1998)

    Book  MATH  Google Scholar 

  50. Bures, D.: An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite w*-algebras. Trans. Am. Math. Soc. 135, 199 (1969)

    MathSciNet  MATH  Google Scholar 

  51. Uhlmann, A.: The transition probability in the state space of a w*-algebra. Rep. Math. Phys. 9, 273 (1976)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. Hübner, M.: Computation of Uhlmann’s parallel transport for density matrices and the Bures metric on three-dimensional Hilbert space. Phys. Lett. A 163, 229 (1992)

    Article  Google Scholar 

  53. Jozsa, R.: A new proof of the quantum noiseless coding theorem. J. Mod. Opt. 41, 2315 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. Schumacher, B.: Quantum coding. Phys. Rev. A 51, 2738 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  55. Jaako, T., Xiang, Z., Garcia-Ripoll, J.J., Rabl, P.: Ultrastrong-coupling phenomena beyond the Dicke model. Phys. Rev. A 94, 033850 (2016)

    Article  ADS  Google Scholar 

  56. Zanardi, P., Zalka, C., Faoro, L.: On the entangling power of quantum evolutions. Phys. Rev. A 62, 030301(R) (2000)

    Article  MathSciNet  ADS  Google Scholar 

  57. Zanardi, P.: Entanglement of quantum evolutions. Phys. Rev. A 63, 040304(R) (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. Makhlin, Y.: Characterization of two-qubit perfect entanglers. Quantum Inf. Process. 1, 243 (2002)

    Article  MathSciNet  Google Scholar 

  59. Zhang, J., Vala, J., Sastry, S., Whaley, K.B.: Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 042313 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  60. Deng, C., Orgiazzi, J., Shen, F., Ashhab, S., Lupascu, A.: Observation of Floquet states in a strongly driven artificial atom. Phys. Rev. Lett. 115, 133601 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is supported by the NSF of China (Grant Nos. 11405026 and 11575042). Y.M.W. is supported by the NSF of China (Grant No. 11404407), the NSF of Jiangsu (Grant No. BK20140072) and China Postdoctoral Science Foundation (Grant Nos. 2015M580965 and 2016T90028). J.L.C. is supported by the NSF of China (Grant No. 11475089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangcheng Wang.

Appendices

A The derivation of effective Hamiltonian in Eq. (9)

In this appendix, we give the detailed derivation of Eq. (9) from Eq. (2). For the sake of simplification, we set unified qubit frequency (i.e., \(\omega _{q}^{m}=\omega _{q})\) and unified coupling strength (i.e., \(g_{m}=g\)). In order to obtain the effective Hamiltonian, we introduce the periodical modulation of the transition frequency in the following form:

$$\begin{aligned} \omega _{q}^{m}(t) = \omega _{q} + \varepsilon _{m}\sin \left( \omega _{m}t-\phi _{m}\right) . \end{aligned}$$
(27)

Then, the two-qubit QRM with the frequency modulation field can be recast as follows:

$$\begin{aligned} H(t)= & {} \sum _{m=1}^{2}\frac{\omega _{q}^{m}(t)}{2}\sigma _{z}^{m}+ \omega _{r}a^{\dag }a+g\left( a^{\dag }+a\right) \sum _{m=1}^{2}\sigma _{x}^{m}. \end{aligned}$$
(28)

Moving to the rotating frame defined by time-dependent transformation \(\mathcal {U}(t) = \mathcal {U}_{1}(t)\mathcal {U}_{2}(t)\) with

$$\begin{aligned}&\mathcal {U}_{1}(t) = \exp \left[ -i\left( \sum _{m}\frac{\omega _{q}}{2}\sigma _{z}^{m} + \omega _{r}a^{\dag }a\right) t\right] , \end{aligned}$$
(29a)
$$\begin{aligned}&\mathcal {U}_{2}(t) = \exp \left[ i\sum _{m}\frac{\alpha _{m}}{2}\cos (\omega _{m}t-\phi _{m})\sigma _{z}^{m}\right] , \end{aligned}$$
(29b)

where \(\alpha _{m}=\varepsilon _{m}/\omega _{m}\). For simplification, we set \(\phi _{m}=\phi \) and \(\omega _{m}=\omega \). In the rotating framework, the transformed Hamiltonian reads

$$\begin{aligned} \tilde{H}(t) = \mathcal {U}^{\dag }(t)H\mathcal {U}(t)-i\mathcal {U}^{\dag }(t)\partial _{t}\mathcal {U}(t) \, . \end{aligned}$$
(30)

The first term in Eq. (30) reads

$$\begin{aligned} \mathcal {U}^{\dag }(t)H\mathcal {U}(t)&= \mathcal {U}^{\dag }(t)\left( g(a^{\dag }+a)\sum _{m=1}^{2}\sigma _{x}^{m}\right) \mathcal {U}(t)\nonumber \\&=g\sum _{m=1}^2\left( a^{\dag }\sigma _{-}^{m}e^{i(\omega _{r}-\omega _{q}+\alpha _{m}\cos (\omega t-\phi ))t} +a^{\dag }\sigma _{+}^{m}e^{i(\omega _{r}+\omega _{q}-\alpha _{m}\cos (\omega t-\phi ))t} + h.c.\right) \nonumber \\&= g\sum _{m=1}^2\left( a^{\dag }\sigma _{-}^{m}e^{i\delta _{-}t}e^{i\alpha _{m}\cos (\omega t-\phi )} +a^{\dag }\sigma _{+}^{m}e^{i\delta _{+}t}e^{-i\alpha _{m}\cos (\omega t-\phi )} + h.c.\right) , \end{aligned}$$
(31)

where \(\delta _{\pm } = \omega _{r}\pm \omega _{q}\) and \(\sigma _{\pm }^{m}\equiv (\sigma _{x}^{m}\pm i \sigma _{y}^{m})/2\). In order to obtain the second term in Eq. (30), we should calculate the derivative of the operator exponential. Let \(\exp (A(t))\) be the operator exponential. If \([\partial _{t}A(t),A(t)]=0\), the derivative of \(\exp (A(t))\) reads

$$\begin{aligned} \partial _{t}\exp (A(t)) = \left( \partial _{t}A(t)\right) \exp (A(t))=\exp (A(t))\left( \partial _{t}A(t)\right) \, . \end{aligned}$$
(32)

By means of Eq. (32), the derivative of the \(\mathcal {U}(t)\) reads

$$\begin{aligned} \partial _{t}\mathcal {U}(t) = \mathcal {U}(t)\left[ -i\left( \sum _{m}\frac{\omega _{q}}{2}\sigma _{z}^{m} + \omega _{r}a^{\dag }a\right) -i\sum _{m}\frac{\varepsilon _{m}}{2}\sin (\omega _{m}t-\phi _{m})\sigma _{z}^{m}\right] \, .\nonumber \\ \end{aligned}$$
(33)

Then, the second term in Eq. (30) reads

$$\begin{aligned} -i\mathcal {U}^{\dag }(t)\partial _{t}\mathcal {U}(t)&= -i\mathcal {U}^{\dag }(t)\mathcal {U}(t)\left[ -i\left( \sum _{m}\frac{\omega _{q}}{2}\sigma _{z}^{m} + \omega _{r}a^{\dag }a\right) -i\sum _{m}\frac{\varepsilon _{m}}{2}\sin (\omega _{m}t-\phi _{m})\sigma _{z}^{m}\right] \nonumber \\&= -\left( \sum _{m}\frac{\omega _{q}}{2}\sigma _{z}^{m} + \omega _{r}a^{\dag }a\right) -\sum _{m}\frac{\varepsilon _{m}}{2}\sin (\omega _{m}t-\phi _{m})\sigma _{z}^{m}\nonumber \\&= -\sum _{m=1}^{2}\frac{\omega _{q}^{m}(t)}{2}\sigma _{z}^{m} - \omega _{r}a^{\dag }a. \end{aligned}$$
(34)

Substituting Eq. (31) and Eqs. (34)–(30), we obtain

$$\begin{aligned} \tilde{H}(t) = g\sum _{m=1}^2\left( a^{\dag }\sigma _{-}^{m}e^{i\delta _{-}t}e^{i\alpha _{m}\cos (\omega t-\phi )} +a^{\dag }\sigma _{+}^{m}e^{i\delta _{+}t}e^{-i\alpha _{m}\cos (\omega t-\phi )} + h.c.\right) . \end{aligned}$$
(35)

The exponential term \(\exp (\pm \alpha _{m}\cos (\omega t-\phi ))\) can be expanded by means of the following Jacobi–Anger identity [49]:

$$\begin{aligned} \exp \left( \pm i\alpha _{m}\cos (\omega t-\phi )\right) = \sum _{l=-\infty }^{+\infty } (\pm i)^{l}J_{l}(\alpha _{m})\exp (\pm il(\omega t-\phi )). \end{aligned}$$
(36)

Here, \(J_{l}(\alpha _m)\) is the Bessel function of first kind. Substituting Eqs. (36)–(35), we obtain

$$\begin{aligned} \tilde{H}(t)&= g\sum _{m=1}^2\left[ a^{\dag }\sigma _{-}^{m}\sum _{l=-\infty }^{+\infty } i^{l}J_{l}(\alpha _{m})e^{i\delta _{-}t}e^{il(\omega t-\phi )}\right. \nonumber \\&\quad \left. + a^{\dag }\sigma _{+}^{m}\sum _{l'=-\infty }^{+\infty } (-i)^{l'}J_{l'}(\alpha _{m})e^{i\delta _{+}t}e^{-il'(\omega t-\phi )} + h.c.\right] . \end{aligned}$$
(37)

Here, \(J_{l}(\alpha _m)\) is the Bessel function of first kind. The oscillation frequency in Eq. (30) is \(\delta _{-}+l\omega \) and \(\delta _{+}-l'\omega \). If we set \(\omega =2\omega _{q}\) and \(\eta >1\), the lowest oscillation frequency is \(|\delta _{-}|=|\eta -1|\omega _{r}\). Hence, many higher-order terms in Eq. (37) can be neglected according to the RWA. Taking the first term in Eq. (37) as an example, we have

$$\begin{aligned} \tilde{H}^{(1)}(t)=g\sum _{m=1}^2\left[ a^{\dag }\sigma _{-}^{m}\sum _{l=-\infty }^{+\infty } i^{l}J_{l}(\alpha _{m})e^{i\delta _{-}t}e^{il(\omega t-\phi )} + h.c.\right] . \end{aligned}$$
(38)

When \(l=-1\), the phases are revised as \(e^{\pm i(\delta _{-}-\omega )t\pm i\phi }\). By properly choosing parameters, we have \(|\delta _{-}-\omega |\gg g|J_{-1}(\alpha _{m})|\), and this tells us that the term can be omitted. When \(l=0\), the phases reduce to \(e^{\pm i\delta _{-}t}=e^{\pm i(\omega _{r}-\omega _{q})t}\). With proper choice of parameters, it is possible to make \(|\delta _{-}|\) not much greater than \(g|J_{0}(\alpha _{m})|\) and as a result it cannot be neglected according to the RWA. When \(l=1\), the phases are combined as \(e^{\pm i(\delta _{-}+\omega ) t\mp i\phi }=e^{\pm i\delta _{+}t\mp i\phi }\). It is possible to make \(|\delta _{+}|\gg g|J_{1}(\alpha _{m})|\), and hence it gives a higher-order oscillating term which can be omitted too. Similarly, it can be found that all the terms in \(\tilde{H}^{(1)}(t)\) with \(l\ne 0\) are higher-order oscillating terms. While for the second term in Eq. (37), all the terms with \(l^{\prime }\ne 1\) are also higher-order oscillating terms based on appropriate parameters. Finally, letting \(\phi =\pi /2\) and ignoring all the higher-order terms, we can obtain the following effective Hamiltonian:

$$\begin{aligned} \tilde{H}_\mathrm{eff}= & {} \sum _{m=1}^2 g_\mathrm{eff}\left( a^{\dag }e^{i\delta _{-}t}+a e^{-i\delta _{-}t}\right) \sigma _{x}^{m}, \end{aligned}$$
(39)

where \(g_\mathrm{eff}=0.5479g\) and this is because we choose \(\alpha _{m}=1.4347\) and so \(J_{0}(\alpha _{m})=J_{1}(\alpha _{m})=0.5479\). This is just the desired conditional displacement interaction in the transversal direction for two qubits.

B The derivation of evolution operator in Eq. (15)

In this appendix, we present a detailed derivation of Eq. (15) from Eq. (9). If we set \(J_{x}=\sigma _{x}^{1}+\sigma _{x}^{2}\), Eq. (9) is recast as follows:

$$\begin{aligned} \tilde{H}_\mathrm{eff}(t)= & {} g_\mathrm{eff}\left( a^{\dag }e^{i\delta _{-}t}+a e^{-i\delta _{-}t}\right) J_{x}. \end{aligned}$$
(40)

The evolution operator of effective Hamiltonian in Eq. (40) can be obtained by means of the Magnus expansion. The evolution operator U(t) satisfies the following differential equation:

$$\begin{aligned} i\partial _{t}U(t)= \tilde{H}_\mathrm{eff}(t)U(t). \end{aligned}$$
(41)

The solution to Eq. (41) can be written as the following Magnus series form:

$$\begin{aligned} U(t)=\mathrm{exp}(\varOmega (t))=\mathrm{exp}(\varOmega _{1}(t)+\varOmega _{2}(t)+\varOmega _{3}(t)+\cdots ), \end{aligned}$$
(42)

where the first three terms of \(\varOmega (t)\) are given as follows:

$$\begin{aligned}&\varOmega _{1}(t)=-i\int _{0}^{t}\tilde{H}_{1}\mathrm{d}t_{1}, \end{aligned}$$
(43a)
$$\begin{aligned}&\varOmega _{2}(t)=\frac{(-i)^{2}}{2}\int _{0}^{t}\mathrm{d}t_{1}\int _{0}^{t_{1}}\mathrm{d}t_{2}\left[ \tilde{H}_{1},\tilde{H}_{2}\right] ,\end{aligned}$$
(43b)
$$\begin{aligned}&\varOmega _{3}(t)= \frac{(-i)^{3}}{6}\int _{0}^{t}\mathrm{d}t_{1}\int _{0}^{t_{1}}\mathrm{d}t_{2}\int _{0}^{t_{2}}\mathrm{d}t_{3}\left( \left[ \tilde{H}_{1},\left[ \tilde{H}_{2},\tilde{H}_{3}\right] \right] +\left[ \tilde{H}_{3},\left[ \tilde{H}_{2},\tilde{H}_{1}\right] \right] \right) . \end{aligned}$$
(43c)

Here, we have made the notation simplification that \(\tilde{H}_{k}=\tilde{H}(t_{k})\). Substituting Eqs. (40)–(43), we obtain

$$\begin{aligned}&\varOmega _{1}(t)= \frac{g_\mathrm{eff}}{\delta _{-}}\left( a(e^{-i\delta _{-}t}-1)-a^{\dag }(e^{i\delta _{-}t}-1)\right) J_{x},\end{aligned}$$
(44a)
$$\begin{aligned}&\varOmega _{2}(t)= i\frac{g_\mathrm{eff}^{2}}{\delta _{-}^{2}}\left( \delta _{-}t-\sin (\delta _{-}t)\right) J_{x}^{2},\end{aligned}$$
(44b)
$$\begin{aligned}&\varOmega _{k}(t)=0,\quad k\ge 3. \end{aligned}$$
(44c)

Here, we used the commutation relation \([\tilde{H}_{i},\tilde{H}_{j}]=2ig_\mathrm{eff}^{2}\sin \left[ \delta _{-}(t_{j}-t_{i})\right] J_{x}^{2}\). We also can check the relation \([\varOmega _{1}(t),\varOmega _{2}(t)]=0\). Then, the evolution operator U(t) in Eq. (42) can be recast as

$$\begin{aligned} U(t)=\mathrm{exp}(\varOmega _{1}(t))\mathrm{exp}(\varOmega _{2}(t))=D[\beta (t)J_{x}]\mathrm{exp}\left( i\varPhi (t)J_{x}^{2}\right) , \end{aligned}$$
(45)

where \(J_{x}=\sigma _{x}^{1}+\sigma _{x}^{2}\), \(\beta (t)=(g_\mathrm{eff}/\delta _{-})(1-e^{i\delta _{-}t})\) and \(\varPhi (t)=(g_\mathrm{eff}/\delta _{-})^{2}(\delta _{-}t-\sin (\delta _{-}t))\), and \(D(\beta )=e^{\beta a^{\dag } - \beta ^{*}a}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, Q., Wang, Y. et al. Conditional displacement interaction in transversal direction from the quantum Rabi model. Quantum Inf Process 17, 205 (2018). https://doi.org/10.1007/s11128-018-1975-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1975-x

Keywords

Navigation