Skip to main content
Log in

Application of constacyclic codes to entanglement-assisted quantum maximum distance separable codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The entanglement-assisted stabilizer formalism overcomes the dual-containing constraint of standard stabilizer formalism for constructing quantum codes. This allows ones to construct entanglement-assisted quantum error-correcting codes (EAQECCs) from arbitrary linear codes by pre-shared entanglement between the sender and the receiver. However, it is not easy to determine the number c of pre-shared entanglement pairs required to construct an EAQECC from arbitrary linear codes. In this paper, let q be a prime power, we aim to construct new q-ary EAQECCs from constacyclic codes. Firstly, we define the decomposition of the defining set of constacyclic codes, which transforms the problem of determining the number c into determining a subset of the defining set of underlying constacyclic codes. Secondly, five families of non-Hermitian dual-containing constacyclic codes are discussed. Hence, many entanglement-assisted quantum maximum distance separable codes with \(c\le 7\) are constructed from them, including ones with minimum distance \(d\ge q+1\). Most of these codes are new, and some of them have better performance than ones obtained in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405–408 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE. Trans. Inf. Theory 44, 1369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. Thesis, California Institute of Technology (1997)

  4. Gottesman, D.: Fault-tolerant quantum computation with higher-dimensional systems. Phys. Rev. A 57(1), 127–137 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bowen, G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 66, 052313 (2002)

    Article  ADS  Google Scholar 

  6. Brun, T., Devetak, I., Hsieh, M.-H.: Correcting quantum errors with entanglement. Science 52, 436–439 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Grassl, M.: Entanglement-assisted quantum communication beating the quantum Singleton bound. Talk at AQIS, Taiwan (2016)

    Google Scholar 

  8. Lai, C., Ashikhmin, A.: Linear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumerators. IEEE Trans. Inf. Theory 64(1), 622–639 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krishna, A., Sarwate, D.V.: Pseudo-cyclic maximum-distance separable codes. IEEE Trans. Inf. Theory 36, 880–884 (1990)

    Article  MATH  Google Scholar 

  10. Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. La Guardia, G.G.: New quantum MDS codes. IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, G., Chen, B.: New quantum MDS codes. Int. J. Quantum Inf. 12(4), 5551–5554 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14(3), 881–889 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inform. Theory 61, 1474–1484 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, X., Xu, L., Chen, H.: New q-ary quantum MDS codes with distance bigger than \(\frac{q}{2}\). Quantum Inf. Process 15, 2745–2758 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Zhang, T., Ge, G.: Quantum MDS codes with large minimun distance. Des. Codes Cryptogr. 83(3), 503–517 (2016)

    Article  MATH  Google Scholar 

  20. Shi, X., Yue, Q., Zhu, X.: Construction of some new quantum MDS codes. Finite Fields Appl. 46, 347–362 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84(3), 463–471 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qian, J., Zhang, L.: Improved constructions for quantum maximum distance separable codes. Quantum Inf. Process. 16(1), 20 (2017). https://doi.org/10.1007/s11128-016-1490-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lai, C., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013). See also arXiv:1008.2598v1

    Article  ADS  Google Scholar 

  24. Lai, C., Brun, T. A., Wilde, M. M.: Dualities and identities for entanglement-assisted quantum codes. (2011). See also arXiv:1010.5506v2

  25. Li, R., Guo, L., Xu, Z.: Entanglement-assisted quantum codes achieving the quantum Singleton bound but violating the quantum Hamming bound. Quantum Inf. Comput. 14, 1107–1116 (2014)

    MathSciNet  Google Scholar 

  26. Fan, J., Chen, H., Xu, J.: Constructions of \(q\)-ary entanglement-assisted quantum MDS codes with minimum distance greater than \(q+1\). Quantum Inf. Comput. 16, 0423–0434 (2016)

    MathSciNet  Google Scholar 

  27. Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16, 303 (2017). https://doi.org/10.1007/s11128-017-1750-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. (2017). https://doi.org/10.1007/s10623-017-0330-z

    MATH  Google Scholar 

  29. Li, R., Xu, G., Lv, L.: Decomposition of defining set of BCH codes and its applications. J. Air Force Eng. Univ. (Nat. Sci.Ed.) 14(2), 87 (2013). (In Chinese)

    Google Scholar 

  30. Macwilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing Company, Amsterdam (1977)

    MATH  Google Scholar 

  31. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  32. Lidar, A., Brun, T.A.: Quantum Error Correction. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  33. Li, R., Zuo, F., Liu, Y.: A study of skew symmetric \(q^2\)-cyclotomic coset and its applications. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 12(1), 87 (2011). (In Chinese)

    Google Scholar 

  34. Sloane, N.J.A., Thompson, J.G.: Cyclic self-dual codes. IEEE Trans. Inf. Theory 29, 364–366 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual-containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 12, 0021–0035 (2013)

    MathSciNet  Google Scholar 

  36. Aydin, N., Siap, I., Ray-Chaudhuriand, D.K.: The strucure of 1-generator quasi-twisted codes and new linear codes. Des. Codes Cryptogr. 24, 313–326 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A. 77, 064302 (2008)

    Article  ADS  Google Scholar 

  38. Guo, L., Li, R.: Linear Plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013)

    Article  ADS  Google Scholar 

  39. Lü, L., Li, R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quantum Inf. 12, 1450015 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are sincerely indebted to two anonymous reviewers for their meticulous comments and suggestions, which much improved the presentation and quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihu Li.

Additional information

This work is supported by the National Natural Science Foundation of China under Grant No. 11471011 and Natural Science Foundation of Shaanxi province under Grant No. 2017JQ1032.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, R., Lv, L. et al. Application of constacyclic codes to entanglement-assisted quantum maximum distance separable codes. Quantum Inf Process 17, 210 (2018). https://doi.org/10.1007/s11128-018-1978-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1978-7

Keywords

Navigation