Skip to main content
Log in

The behavior of the generated quantum correlations in two-SC-qubit system strongly coupled with a SC cavity in the presence of local noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An analytical solution of the master equation that describes two charge superconducting qubits interacts with a single microwave cavity field mode within dispersive approximation and dissipation region of the qubit damping. Quantum correlations of a general two-qubit state (non-X-state) are studied by using three different quantum correlation quantifiers: measurement-induced non-locality, geometric quantum discord and logarithmic negativity. It is shown that the quantum correlations are sensitive to the choice of the parameters of the qubit dissipation rate, coherent state intensity and the initial qubit distribution angle. The generated oscillatory behavior of quantum correlations is different and more prominent as the noise rate decreases at the considered period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Masanes, L.: All bipartite entangled states are useful for information processing. Phys. Rev. Lett. 96, 150501 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  4. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  MATH  Google Scholar 

  5. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  6. Henderson, L., Vedral, V.: Classical quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Mohamed, A.-B.A., Eleuch, H.: Generation and robustness of bipartite non-classical correlations in two nonlinear microcavities coupled by an optical fiber. J. Opt. Soc. Am. B 35, 47–53 (2018)

    Article  ADS  Google Scholar 

  8. Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  9. Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  10. Cui, J., Fan, H.: Correlations in the Grover search. J. Phys. A Math. Theor. 43, 045305 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  12. Li, X., Pan, Q., Jing, J., Zhang, J., Xie, C., Peng, K.: Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. Phys. Rev. Lett. 88, 047904 (2002)

    Article  ADS  Google Scholar 

  13. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  14. Shi, J.-D., Wang, D., Ye, L.: Comparative explorations of the revival and robustness for quantum dynamics under decoherence channels. Quantum Inf. Process. 15, 1649–1659 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Shi, J.D., Wang, D., Ma, W.C., Ye, L.: Enhancing quantum correlation in open-system dynamics by reliable quantum operations. Quantum Inf. Process. 14, 3569–3579 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Mohamed, A.-B.A.: Pairwise quantum correlations of a three-qubit XY chain with phase decoherence. Quantum Inf. Process. 12, 11411153 (2013)

    Article  MathSciNet  Google Scholar 

  17. Wu, S.-X., Zhang, J., Yu, C.-S., Song, H.-S.: Uncertainty-induced quantum nonlocality. Phys. Lett. A 378, 344 (2014)

    Article  ADS  Google Scholar 

  18. Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Bipartite non-local correlations in a double-quantum-dot excitonic system. J. Phys. A Math. Theor. 47, 335301 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Obada, A.-S.F., Mohamed, A.-B.A.: Quantum correlations of two non-interacting ion’s internal electronic states with intrinsic decoherence. Opt. Commun. 309, 236 (2013)

    Article  ADS  Google Scholar 

  20. Tian, Z., Jing, J.: Measurement-induced-nonlocality via the Unruh effect. Ann. Phys. 333, 76 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Wei, J.-L., Li, X.-L., Zhang, X.-Z., Guo, J.-L.: Dynamical behavior of quantum correlations between two qubits coupled to an external environment. Quantum Inf. Process. 15, 24252440 (2016)

    MathSciNet  Google Scholar 

  22. You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)

    Article  Google Scholar 

  23. You, J.Q., Tsai, J.S., Nori, F.: Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits. Phys. Rev. B 68, 024510 (2003)

    Article  ADS  Google Scholar 

  24. Niskanen, A.O., Harrabi, K., Yoshihara, F., Nakamura, Y., Lloyd, S., Tsai, J.S.: Quantum coherent tunable coupling of superconducting qubits. Science 316, 723 (2007)

    Article  ADS  Google Scholar 

  25. Obada, A.-S.F., Hessian, H.A., Mohamed, A.-B.A., Homid, A.H.: A proposal for the realization of universal quantum gates via superconducting qubits inside a cavity. Ann. Phys. 334, 47 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. You, J.Q., Tsai, J.S., Nori, F.: Hybridized solid-state qubit in the charge-flux regime. Phys. Rev. B 73, 014510 (2006)

    Article  ADS  Google Scholar 

  27. Obada, A.-S.F., Hessian, H.A., Mohamed, A.-B.A., Homid, A.H.: Efficient protocol of \(N\)-bit discrete quantum Fourier transform via transmon qubits coupled to a resonator. Quantum Inf. Process. 13, 475 (2014)

    Article  ADS  MATH  Google Scholar 

  28. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 1627 (2004)

    Article  Google Scholar 

  29. Reithmaier, J.P., Löffler, A., Sk, G., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197 (2004)

    Article  ADS  Google Scholar 

  30. Mabuchi, H., Doherty, A.C.: Cavity quantum electrodynamics: coherence in context. Science 298, 1372 (2002)

    Article  ADS  Google Scholar 

  31. Orgiazzi, J.-L., Deng, C., Layden, D., Marchildon, R., Kitapli, F., Shen, F., Bal, M., Ong, F., Lupascu, A.: Flux qubits in a planar circuit quantum electrodynamics architecture: quantum control and decoherence. Phys. Rev. B 93, 104518 (2016)

    Article  ADS  Google Scholar 

  32. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  33. Shi, J.-D., Xu, S., Ma, W.-C., Song, X.-K., Ye, L.: Purifying two-qubit entanglement in nonidentical decoherence by employing weak measurements. Quantum Inf. Process. 14, 1387–1397 (2015)

    Article  ADS  MATH  Google Scholar 

  34. Shi, J.D., Wu, T., Song, X.K., Ye, L.: Dynamics of entanglement under decoherence in noninertial frames. Chin. Phys. B 23, 020310 (2014)

    Article  ADS  Google Scholar 

  35. Ann, K., Jaeger, G.: Finite-time destruction of entanglement and non-locality by environmental influences. Found. Phys. 39, 790 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Bellomo, B., Compagno, G., Lo Franco, R., Ridolfo, A., Savasta, S.: Dynamics and extraction of quantum discord in a multipartite open system. Int. J. Quantum Inf. 9, 1665 (2011)

    Article  MATH  Google Scholar 

  37. Shi, J.D., Wu, T., Song, X.K., Ye, L.: Multipartite concurrence for X states under decoherence. Quantum Inf. Process. 13, 1045–1056 (2014)

    Article  ADS  MATH  Google Scholar 

  38. Makhlin, Y., Schön, G., Shnirman, A.: Josephson-junction qubits with controlled couplings. Nature 398, 305 (1999)

    Article  ADS  Google Scholar 

  39. Liu, Y.-X., Wei, L.F., Nori, F.: Measuring the quality factor of a microwave cavity using superconducting qubit devices. Phys. Rev. A 72, 033818 (2005)

    Article  ADS  Google Scholar 

  40. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  41. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  42. Mohamed, A.-B.A., Hessian, H.A., Obada, A.-S.F.: Entanglement sudden death of a SC-qubit strongly coupled with a quantized mode of a lossy cavity. Physica A 390, 519 (2011)

    Article  ADS  Google Scholar 

  43. Ficek, Z., Tanaś, R.: Delayed sudden birth of entanglement. Phys. Rev. A 77, 0543011 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their subjective comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hashem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, AB.A., Hashem, M. The behavior of the generated quantum correlations in two-SC-qubit system strongly coupled with a SC cavity in the presence of local noise. Quantum Inf Process 17, 217 (2018). https://doi.org/10.1007/s11128-018-1986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1986-7

Keywords

Navigation