Abstract
Secret sharing, in which a dealer wants to split a secret in such a way that any unauthorized subsets of parties are unable to reconstruct it, plays a key role in cryptography. The security of quantum protocols for the task is guaranteed by the fact that Eve’s any strategies to obtain secret information from encoded quantum states should cause a disturbance in the signal. Here, we propose a quantum secret sharing (classical information) scheme for N parties which is no longer needed to monitor signal disturbance. Comparing to existing qudit-based schemes, this scheme has obvious advantages in feasibility and scalability. Our work paves a novel way for quantum secret sharing.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, 1979, vol. 48, No. 313 (1979). http://ci.nii.ac.jp/naid/20001635303/en/
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612 (1979). https://doi.org/10.1145/359168.359176
Bennet, C.H.: Proceedings of IEEE International Conference on Computer Systems and Signal Processing, Bangalore, India, December 10–12, 1984 (1984)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)
Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8(8), 595 (2014). https://doi.org/10.1038/nphoton.2014.149
Hillery, M., Buek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999). https://doi.org/10.1103/PhysRevA.59.1829
Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999). https://doi.org/10.1103/PhysRevA.59.162
Xiao, L., Lu Long, G., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004). https://doi.org/10.1103/PhysRevA.69.052307
Dehkordi, M.H., Fattahi, E.: Threshold quantum secret sharing between multiparty and multiparty using greenbergerhornezeilinger state. Quantum Inf. Process. 12(2), 1299 (2013). https://doi.org/10.1007/s11128-012-0471-y
Qin, H., Dai, Y.: Proactive quantum secret sharing. Quantum Inf. Process. 14(11), 4237 (2015). https://doi.org/10.1007/s11128-015-1106-x
Fu, Y., Yin, H.L., Chen, T.Y., Chen, Z.B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114(9), 090501 (2015). https://doi.org/10.1103/PhysRevLett.114.090501
Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A: PRA 95(2), 022320 (2017). https://doi.org/10.1103/PhysRevA.95.022320.
Bai, C.M., Li, Z.H., Liu, C.J., Li, Y.M.: Quantum secret sharing using orthogonal multiqudit entangled states. Quantum Inf. Process. 16(12), 304 (2017). https://doi.org/10.1007/s11128-017-1739-z
Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: Quantum secret sharing using the d-dimensional ghz state. Quantum Inf. Process. 16(3), 59 (2017). https://doi.org/10.1007/s11128-016-1506-6
Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999). https://doi.org/10.1103/PhysRevLett.83.648
Lu, H., Zhang, Z., Chen, L.K., Li, Z.D., Liu, C., Li, L., Liu, N.L., Ma, X., Chen, Y.A., Pan, J.W.: Secret sharing of a quantum state. Phys. Rev. Lett. 117(3), 030501 (2016). https://doi.org/10.1103/PhysRevLett.117.030501
Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903 (2004)
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A: PRA 72(4), 044301 (2005). https://doi.org/10.1103/PhysRevA.72.044301.
Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001). https://doi.org/10.1103/PhysRevA.63.042301
Chen, Y.A., Zhang, A.N., Zhao, Z., Zhou, X.Q., Lu, C.Y., Peng, C.Z., Yang, T., Pan, J.W.: Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95(20), 200502 (2005). https://doi.org/10.1103/PhysRevLett.95.200502
Gaertner, S., Kurtsiefer, C., Bourennane, M., Weinfurter, H.: Experimental demonstration of four-party quantum secret sharing. Phys. Rev. Lett. 98(2), 020503 (2007). https://doi.org/10.1103/PhysRevLett.98.020503
Yu, I.C., Lin, F.L., Huang, C.Y.: Quantum secret sharing with multilevel mutually (un)biased bases. Phys. Rev. A 78(1), 012344 (2008)
Scherpelz, P., Resch, R., Berryrieser, D., Lynn, T.W.: Entanglement-secured single-qubit quantum secret sharing. Phys. Rev. A 84(3), 032303 (2011). https://doi.org/10.1103/PhysRevA.84.032303
Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12(1), 365 (2013). https://doi.org/10.1007/s11128-012-0379-6
Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92(3), 030301 (2015). https://doi.org/10.1103/PhysRevA.92.030301
Tavakoli, A., Herbauts, I., Żukowski, M., Bourennane, M.: Secret sharing with a single \(d\)-level quantum system. Phys. Rev. A 92(3), 030302 (2015)
Liu, H., Ma, H., Wei, K., Yang, X., Qu, W., Dou, T., Chen, Y., Li, R., Zhu, W.: Multi-group dynamic quantum secret sharing with single photons. Phys. Lett. A 380(3132), 2349 (2016). https://doi.org/10.1016/j.physleta.2016.05.032
Qin, H., Dai, Y.: Efficient quantum secret sharing. Quantum Inf. Process. 15(5), 2091 (2016). https://doi.org/10.1007/s11128-016-1251-x
Bogdanski, J., Rafiei, N., Bourennane, M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78(6), 062307 (2008)
Bogdanski, J., Ahrens, J., Bourennane, M.: Sagnac secret sharing over telecom fiber networks. Opt. Express 17(2), 1055 (2009). https://doi.org/10.1364/OE.17.001055
Ma, H.Q., Wei, K.J., Yang, J.H.: Experimental single qubit quantum secret sharing in a fiber network configuration. Opt. Lett. 38(21), 4494 (2013)
Wei, K.J., Ma, H.Q., Yang, J.H.: Experimental circular quantum secret sharing over telecom fiber network. Opt. Express 21(14), 16663 (2013). https://doi.org/10.1364/OE.21.016663
Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005). https://doi.org/10.1103/PhysRevA.71.044301
Deng, F.G., Li, X.H., Zhou, H.Y.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72, 044302 (2005). https://doi.org/10.1103/PhysRevA.72.044302
Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357(2), 101 (2006). https://doi.org/10.1016/j.physleta.2006.04.030
Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)
He, G.P.: Comment on “experimental single qubit quantum secret sharing”. Phys. Rev. Lett. 98, 028901 (2007). https://doi.org/10.1103/PhysRevLett.98.028901
Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H., Schmid et al.: reply. Phys. Rev. Lett. 98, 028902 (2007). https://doi.org/10.1103/PhysRevLett.98.028902
He, G., Ping, Wang, D.Z.: Single qubit quantum secret sharing with improved security. Quantum Inf. Comput. 10(1–2), 28 (2010)
Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999). https://doi.org/10.1126/science.283.5410.2050
Chen, Kai, Lo, Hoi-Kwong: Multi-partite quantum cryptographic protocols with noisy ghz states. Quantum Inf. Comput. 7(8), 689 (2007)
Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509(7501), 475 (2014). https://doi.org/10.1038/nature13303
Guan, J.Y., Cao, Z., Liu, Y., Shen-Tu, G.L., Pelc, J.S., Fejer, M.M., Peng, C.Z., Ma, X., Zhang, Q., Pan, J.W.: Experimental passive round-robin differential phase-shift quantum key distribution. Phys. Rev. Lett. 114(18), 180502 (2015). https://doi.org/10.1103/PhysRevLett.114.180502
Wang, S., Yin, Z.Q., Chen, W., He, D.Y., Song, X.T., Li, H.W., Zhang, L.J., Zhou, Z., Guo, G.C., Han, Z.F.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Photonics 9(12), 832 (2015). https://doi.org/10.1038/nphoton.2015.209
Takesue, H., Sasaki, T., Tamaki, K., Koashi, M.: Experimental quantum key distribution without monitoring signal disturbance. Nat. Photonics 9(12), 827 (2015). https://doi.org/10.1038/nphoton.2015.173
Yin, Z.Q., Wang, S., Chen, W., Han, Y.G., Guo, G.C., Han, Z.F.: Implementing long-distance round-robin-differential-phase-shift quantum key distribution with simplest setup (2017). arXiv preprint arXiv:1702.01260
Yi, Z., Bing, Q., Hoi-Kwong, L., Li, Q.: Security analysis of an untrusted source for quantum key distribution: passive approach. New J. Phys. 12(2), 023024 (2010). http://stacks.iop.org/1367-2630/12/i=2/a=023024
Xu, B., Peng, X., Guo, H.: Passive scheme with a photon-number-resolving detector for monitoring the untrusted source in a plug-and-play quantum-key-distribution system. Phys. Rev. A 82, 042301 (2010). https://doi.org/10.1103/PhysRevA.82.042301
Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(12), 23 (2006). https://doi.org/10.1016/j.physleta.2005.10.050
Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017). https://doi.org/10.1103/PhysRevA.95.012315
Cao, Z., Yin, Z.Q., Han, Z.F.: Trustworthiness of measurement devices in round-robin differential-phase-shift quantum key distribution. Phys. Rev. A 93(2), 022310 (2016)
Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005). https://doi.org/10.1103/PhysRevA.72.044302
Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Brádler–Dušek protocol. Quantum Inf. Comput. 7(4), 329 (2007)
Durt, T., Englert, B.G., Bengtsson, I., Yczkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 08(04), 535 (2010). https://doi.org/10.1142/S0219749910006502
Lin, S., Guo, G.D., Xu, Y.Z., Sun, Y., Liu, X.F.: Cryptanalysis of quantum secret sharing with \(d\)-level single particles. Phys. Rev. A: PRA 93(6), 062343 (2016). https://doi.org/10.1103/PhysRevA.93.062343
Acknowledgements
The authors acknowledge helpful review by Haiqiang Ma and Fei Gao. We are grateful to the anonymous referees for their valuable comments to improve the quality of the paper. This work is supported by the National Natural Science Foundation of China (Grant No. 61705048), the Guangxi Science Foundation (Grant No. 2017GXNSFBA198231) and special funding for Guangxi distinguished professors (Bagui Yingcai and Bagui Xuezhe).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wei, K., Yang, X., Zhu, C. et al. Quantum secret sharing without monitoring signal disturbance. Quantum Inf Process 17, 230 (2018). https://doi.org/10.1007/s11128-018-1987-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1987-6