Skip to main content
Log in

Quantum secret sharing without monitoring signal disturbance

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Secret sharing, in which a dealer wants to split a secret in such a way that any unauthorized subsets of parties are unable to reconstruct it, plays a key role in cryptography. The security of quantum protocols for the task is guaranteed by the fact that Eve’s any strategies to obtain secret information from encoded quantum states should cause a disturbance in the signal. Here, we propose a quantum secret sharing (classical information) scheme for N parties which is no longer needed to monitor signal disturbance. Comparing to existing qudit-based schemes, this scheme has obvious advantages in feasibility and scalability. Our work paves a novel way for quantum secret sharing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, 1979, vol. 48, No. 313 (1979). http://ci.nii.ac.jp/naid/20001635303/en/

  2. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612 (1979). https://doi.org/10.1145/359168.359176

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennet, C.H.: Proceedings of IEEE International Conference on Computer Systems and Signal Processing, Bangalore, India, December 10–12, 1984 (1984)

  4. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  5. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8(8), 595 (2014). https://doi.org/10.1038/nphoton.2014.149

    Article  ADS  Google Scholar 

  6. Hillery, M., Buek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999). https://doi.org/10.1103/PhysRevA.59.1829

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999). https://doi.org/10.1103/PhysRevA.59.162

    Article  ADS  Google Scholar 

  8. Xiao, L., Lu Long, G., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004). https://doi.org/10.1103/PhysRevA.69.052307

    Article  ADS  Google Scholar 

  9. Dehkordi, M.H., Fattahi, E.: Threshold quantum secret sharing between multiparty and multiparty using greenbergerhornezeilinger state. Quantum Inf. Process. 12(2), 1299 (2013). https://doi.org/10.1007/s11128-012-0471-y

    Article  ADS  MATH  Google Scholar 

  10. Qin, H., Dai, Y.: Proactive quantum secret sharing. Quantum Inf. Process. 14(11), 4237 (2015). https://doi.org/10.1007/s11128-015-1106-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Fu, Y., Yin, H.L., Chen, T.Y., Chen, Z.B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114(9), 090501 (2015). https://doi.org/10.1103/PhysRevLett.114.090501

    Article  ADS  Google Scholar 

  12. Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A: PRA 95(2), 022320 (2017). https://doi.org/10.1103/PhysRevA.95.022320.

    Article  ADS  Google Scholar 

  13. Bai, C.M., Li, Z.H., Liu, C.J., Li, Y.M.: Quantum secret sharing using orthogonal multiqudit entangled states. Quantum Inf. Process. 16(12), 304 (2017). https://doi.org/10.1007/s11128-017-1739-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: Quantum secret sharing using the d-dimensional ghz state. Quantum Inf. Process. 16(3), 59 (2017). https://doi.org/10.1007/s11128-016-1506-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999). https://doi.org/10.1103/PhysRevLett.83.648

    Article  ADS  Google Scholar 

  16. Lu, H., Zhang, Z., Chen, L.K., Li, Z.D., Liu, C., Li, L., Liu, N.L., Ma, X., Chen, Y.A., Pan, J.W.: Secret sharing of a quantum state. Phys. Rev. Lett. 117(3), 030501 (2016). https://doi.org/10.1103/PhysRevLett.117.030501

    Article  ADS  Google Scholar 

  17. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903 (2004)

    Article  ADS  Google Scholar 

  18. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A: PRA 72(4), 044301 (2005). https://doi.org/10.1103/PhysRevA.72.044301.

    Article  ADS  Google Scholar 

  19. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001). https://doi.org/10.1103/PhysRevA.63.042301

    Article  ADS  Google Scholar 

  20. Chen, Y.A., Zhang, A.N., Zhao, Z., Zhou, X.Q., Lu, C.Y., Peng, C.Z., Yang, T., Pan, J.W.: Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95(20), 200502 (2005). https://doi.org/10.1103/PhysRevLett.95.200502

    Article  ADS  Google Scholar 

  21. Gaertner, S., Kurtsiefer, C., Bourennane, M., Weinfurter, H.: Experimental demonstration of four-party quantum secret sharing. Phys. Rev. Lett. 98(2), 020503 (2007). https://doi.org/10.1103/PhysRevLett.98.020503

    Article  ADS  Google Scholar 

  22. Yu, I.C., Lin, F.L., Huang, C.Y.: Quantum secret sharing with multilevel mutually (un)biased bases. Phys. Rev. A 78(1), 012344 (2008)

    Article  ADS  Google Scholar 

  23. Scherpelz, P., Resch, R., Berryrieser, D., Lynn, T.W.: Entanglement-secured single-qubit quantum secret sharing. Phys. Rev. A 84(3), 032303 (2011). https://doi.org/10.1103/PhysRevA.84.032303

    Article  ADS  Google Scholar 

  24. Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12(1), 365 (2013). https://doi.org/10.1007/s11128-012-0379-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92(3), 030301 (2015). https://doi.org/10.1103/PhysRevA.92.030301

    Article  ADS  MathSciNet  Google Scholar 

  26. Tavakoli, A., Herbauts, I., Żukowski, M., Bourennane, M.: Secret sharing with a single \(d\)-level quantum system. Phys. Rev. A 92(3), 030302 (2015)

    Article  ADS  Google Scholar 

  27. Liu, H., Ma, H., Wei, K., Yang, X., Qu, W., Dou, T., Chen, Y., Li, R., Zhu, W.: Multi-group dynamic quantum secret sharing with single photons. Phys. Lett. A 380(3132), 2349 (2016). https://doi.org/10.1016/j.physleta.2016.05.032

    Article  ADS  Google Scholar 

  28. Qin, H., Dai, Y.: Efficient quantum secret sharing. Quantum Inf. Process. 15(5), 2091 (2016). https://doi.org/10.1007/s11128-016-1251-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Bogdanski, J., Rafiei, N., Bourennane, M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78(6), 062307 (2008)

    Article  ADS  Google Scholar 

  30. Bogdanski, J., Ahrens, J., Bourennane, M.: Sagnac secret sharing over telecom fiber networks. Opt. Express 17(2), 1055 (2009). https://doi.org/10.1364/OE.17.001055

    Article  ADS  Google Scholar 

  31. Ma, H.Q., Wei, K.J., Yang, J.H.: Experimental single qubit quantum secret sharing in a fiber network configuration. Opt. Lett. 38(21), 4494 (2013)

    Article  ADS  Google Scholar 

  32. Wei, K.J., Ma, H.Q., Yang, J.H.: Experimental circular quantum secret sharing over telecom fiber network. Opt. Express 21(14), 16663 (2013). https://doi.org/10.1364/OE.21.016663

    Article  ADS  Google Scholar 

  33. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005). https://doi.org/10.1103/PhysRevA.71.044301

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Deng, F.G., Li, X.H., Zhou, H.Y.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72, 044302 (2005). https://doi.org/10.1103/PhysRevA.72.044302

    Article  ADS  Google Scholar 

  35. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357(2), 101 (2006). https://doi.org/10.1016/j.physleta.2006.04.030

    Article  ADS  MATH  Google Scholar 

  36. Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)

    Article  ADS  Google Scholar 

  37. He, G.P.: Comment on “experimental single qubit quantum secret sharing”. Phys. Rev. Lett. 98, 028901 (2007). https://doi.org/10.1103/PhysRevLett.98.028901

    Article  ADS  Google Scholar 

  38. Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H., Schmid et al.: reply. Phys. Rev. Lett. 98, 028902 (2007). https://doi.org/10.1103/PhysRevLett.98.028902

  39. He, G., Ping, Wang, D.Z.: Single qubit quantum secret sharing with improved security. Quantum Inf. Comput. 10(1–2), 28 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999). https://doi.org/10.1126/science.283.5410.2050

    Article  ADS  Google Scholar 

  41. Chen, Kai, Lo, Hoi-Kwong: Multi-partite quantum cryptographic protocols with noisy ghz states. Quantum Inf. Comput. 7(8), 689 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509(7501), 475 (2014). https://doi.org/10.1038/nature13303

    Article  ADS  Google Scholar 

  43. Guan, J.Y., Cao, Z., Liu, Y., Shen-Tu, G.L., Pelc, J.S., Fejer, M.M., Peng, C.Z., Ma, X., Zhang, Q., Pan, J.W.: Experimental passive round-robin differential phase-shift quantum key distribution. Phys. Rev. Lett. 114(18), 180502 (2015). https://doi.org/10.1103/PhysRevLett.114.180502

    Article  ADS  Google Scholar 

  44. Wang, S., Yin, Z.Q., Chen, W., He, D.Y., Song, X.T., Li, H.W., Zhang, L.J., Zhou, Z., Guo, G.C., Han, Z.F.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Photonics 9(12), 832 (2015). https://doi.org/10.1038/nphoton.2015.209

    Article  ADS  Google Scholar 

  45. Takesue, H., Sasaki, T., Tamaki, K., Koashi, M.: Experimental quantum key distribution without monitoring signal disturbance. Nat. Photonics 9(12), 827 (2015). https://doi.org/10.1038/nphoton.2015.173

    Article  ADS  Google Scholar 

  46. Yin, Z.Q., Wang, S., Chen, W., Han, Y.G., Guo, G.C., Han, Z.F.: Implementing long-distance round-robin-differential-phase-shift quantum key distribution with simplest setup (2017). arXiv preprint arXiv:1702.01260

  47. Yi, Z., Bing, Q., Hoi-Kwong, L., Li, Q.: Security analysis of an untrusted source for quantum key distribution: passive approach. New J. Phys. 12(2), 023024 (2010). http://stacks.iop.org/1367-2630/12/i=2/a=023024

  48. Xu, B., Peng, X., Guo, H.: Passive scheme with a photon-number-resolving detector for monitoring the untrusted source in a plug-and-play quantum-key-distribution system. Phys. Rev. A 82, 042301 (2010). https://doi.org/10.1103/PhysRevA.82.042301

    Article  ADS  Google Scholar 

  49. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(12), 23 (2006). https://doi.org/10.1016/j.physleta.2005.10.050

    Article  ADS  MATH  Google Scholar 

  50. Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017). https://doi.org/10.1103/PhysRevA.95.012315

    Article  ADS  Google Scholar 

  51. Cao, Z., Yin, Z.Q., Han, Z.F.: Trustworthiness of measurement devices in round-robin differential-phase-shift quantum key distribution. Phys. Rev. A 93(2), 022310 (2016)

    Article  ADS  Google Scholar 

  52. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005). https://doi.org/10.1103/PhysRevA.72.044302

    Article  ADS  Google Scholar 

  53. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Brádler–Dušek protocol. Quantum Inf. Comput. 7(4), 329 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Durt, T., Englert, B.G., Bengtsson, I., Yczkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 08(04), 535 (2010). https://doi.org/10.1142/S0219749910006502

    Article  MATH  Google Scholar 

  55. Lin, S., Guo, G.D., Xu, Y.Z., Sun, Y., Liu, X.F.: Cryptanalysis of quantum secret sharing with \(d\)-level single particles. Phys. Rev. A: PRA 93(6), 062343 (2016). https://doi.org/10.1103/PhysRevA.93.062343

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge helpful review by Haiqiang Ma and Fei Gao. We are grateful to the anonymous referees for their valuable comments to improve the quality of the paper. This work is supported by the National Natural Science Foundation of China (Grant No. 61705048), the Guangxi Science Foundation (Grant No. 2017GXNSFBA198231) and special funding for Guangxi distinguished professors (Bagui Yingcai and Bagui Xuezhe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejin Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K., Yang, X., Zhu, C. et al. Quantum secret sharing without monitoring signal disturbance. Quantum Inf Process 17, 230 (2018). https://doi.org/10.1007/s11128-018-1987-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1987-6

Keywords

Navigation