Skip to main content
Log in

Multi-party traveling-mode quantum key agreement protocols immune to collusive attack

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Owing to the disadvantages of susceptible to collusive attack in the existed multi-party quantum key agreement (MQKA) protocols with traveling mode, two secure MQKA protocols with traveling mode were proposed. In order to resist collusive attack, a trust party was introduced in the first protocol and additional random 0–1 sequence was added to the private key sequence of each participant in the second protocol. Compared to existed MQKA protocols with traveling mode, the proposed protocols have three considerable advantages. Firstly, due to the fact that only Bell state measurements and simple single-particle unitary transformation are used, the processions of the proposed protocols are simple and can be easily realized. Secondly, the proposed protocols can resist internal attack, especially collusive attack. Furthermore, the proposed protocols are superior to the existing traveling-mode MQKA protocols in efficiency. Hence, the proposed protocols have great significance both on theory and on practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computer System and Signal Processing, pp. 175–179 (1984)

  2. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  3. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  4. Li, H., Jiang, H., Gao, M., Ma, Z., Ma, C., Wang, W.: Statistical-fluctuation analysis for quantum key distribution with consideration of after-pulse contributions. Phys. Rev. A. 92(6), 062344 (2015)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A. 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  6. Wang, C., Hao, L., Song, S.Y., Long, G.L.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8(03), 443–450 (2010)

    Article  MATH  Google Scholar 

  7. Pirandola, S., Braunstein, S.L., Lloyd, S., Mancini, S.: Confidential direct communications: a quantum approach using continuous variables. IEEE J. Sel. Top. Quantum Electron. 15(6), 1570–1580 (2009)

    Article  ADS  Google Scholar 

  8. Pirandola, S., Braunstein, S.L., Mancini, S., Lloyd, S.: Quantum direct communication with continuous variables. Europhys. Lett. 84(2), 20013 (2008)

    Article  ADS  Google Scholar 

  9. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Cao, H., Ma, W.: (t, n) Threshold quantum state sharing scheme based on linear equations and unitary operation. IEEE Photon. J. 9(1), 1–7 (2017)

    Article  MathSciNet  Google Scholar 

  11. Puthoor, I.V., Amiri, R., Wallden, P., Curty, M., Andersson, E.: Measurement-device-independent quantum digital signatures. Phys. Rev. A. 94(2), 022328 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Wen, L., Yong-Bin, W., Wei, C.: Quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 57(4), 583–588 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004)

    Article  Google Scholar 

  15. Tsai, C., Hwang, T.: On quantum key agreement protocol. In: Technical Report (C-S-I-E, NCKU, Taiwan), ROC (2009)

  16. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  17. Liu, B., Gao, F., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 3411–3420 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    Article  MATH  Google Scholar 

  19. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13(10), 2313–2324 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13(12), 2587–2594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with epr pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13(11), 2370–2389 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Cao, H., Ma, W.: Multiparty quantum key agreement based on quantum search algorithm. Sci. Rep. 7, 45046 (2017)

    Article  ADS  Google Scholar 

  25. Sun, Z., Zhang, C., Wang, P., Yu, J., Zhang, Y., Long, D.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55(3), 1920–1929 (2016)

    Article  MATH  Google Scholar 

  26. Sun, Z., Yu, J., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15(1), 373–384 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(11), 3411–3420 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52(11), 3915–3921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using bell states and bell measurement. Quantum Inf. Process. 13(11), 2391–2405 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states. Int. J. Quantum Inf. 15(03), 1750018 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference (ISC 2004), pp. 236–242 (2004)

  32. Tsai, C.W., Chong, S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference (CISC2010), pp. 210–213 (2010)

  33. Huang, W., Su, Q., Xu, B.J., Liu, B., Fan, F., Jia, H.Y., Yang, Y.H.: Improved multiparty quantum key agreement in travelling mode. Sci. China Phys. Mech. Astronom. 59(12), 120311 (2016)

    Article  Google Scholar 

  34. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 14(11), 4245–4254 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China under Grant No. 2017YFB0802400, the National Science Foundation of China under Grant Nos. 61373171 and 61702007, the 111 Project under Grant No. B08038, the Key Project of Science Research of Anhui Province under Grant No. KJ2017A519 and the Basic Research Project of Natural Science of Shaanxi Province under Grant No. 2017JM6037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Ma, W. Multi-party traveling-mode quantum key agreement protocols immune to collusive attack. Quantum Inf Process 17, 219 (2018). https://doi.org/10.1007/s11128-018-1993-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1993-8

Keywords

Navigation