Skip to main content
Log in

Dynamics of quantum correlation of atoms immersed in a thermal quantum scalar fields with a boundary

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study the behaviors of quantum correlation for two atoms immersed in a thermal bath of quantum scalar fields in the presence of a perfectly reflecting plane boundary. We firstly discuss the solving process of master equation that governs the system evolution. Then, we analyze the creation, revival and degradation of quantum correlation for initial zero-correlation state and initial entangled state. Specially, we discuss in detail the evolution of quantum correlation in certain special conditions and models. The distance from the boundary, besides the bath temperature and the interatomic separation, gives us more freedom in controlling the behaviors of quantum correlation. Compared with the sudden death and birth of entanglement, quantum correlation changes more smoothly and thus is more robust than entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  2. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  3. Datta, A., Gharibian, S.: Signatures of nonclassicality in mixed-state quantum computation. Phys. Rev. Lett. 79, 042325 (2009)

    ADS  Google Scholar 

  4. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  5. Dakić, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Article  Google Scholar 

  6. Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)

    Article  ADS  Google Scholar 

  7. Chuan, T.K., et al.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)

    Article  ADS  Google Scholar 

  8. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  9. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  11. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Huang, Z.M., Qiu, D.W.: Geometric quantum discord under noisy environment. Quantum Inf. Process. 15, 1979 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)

    Article  ADS  Google Scholar 

  14. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  15. Huang, Z.M., Qiu, D.W., Mateus, P.: Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  MATH  Google Scholar 

  17. Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)

    Article  ADS  Google Scholar 

  18. Qiu, L., Liu, Z.: Hierarchy, factorization law of two measurement-induced nonlocalities and their performances in quantum phase transition. Quantum Inf. Process. 15, 2053 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Brodutch, A., Modi, K.: Criteria for measures of quantum correlations. Quantum Inf. Comput. 12, 0721 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Oppenheim, J., Wehner, S.: The uncertainty principle determines the nonlocality of quantum mechanics. Science 330, 1072 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Benatti, F., Floreanini, R.: Controlling entanglement generation in external quantum fields. J. Opt. B Quantum Semiclassical Opt. 7, S429 (2005)

    Article  ADS  Google Scholar 

  22. Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A 91, 012327 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yang, Y.Q., Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms coupled with electromagnetic vacuum fluctuations. Phys. Rev. A 94, 032337 (2016)

    Article  ADS  Google Scholar 

  24. Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar feld. Ann. Phys. 377, 484 (2017)

    Article  ADS  MATH  Google Scholar 

  25. Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    MATH  Google Scholar 

  26. Lamb Jr., W.E., Retherford, R.C.: Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241 (1947)

    Article  ADS  Google Scholar 

  27. Yu, H., Wu, P.X.: Quantum fluctuations of the light cone in four-dimensional spacetime with parallel plane boundaries. Phys. Rev. D 68, 084019 (2003)

    Article  ADS  Google Scholar 

  28. Yu, H., Lu, S.: Spontaneous excitation of an accelerated atom in a spacetime with a reflecting plane boundary. Phys. Rev. D 72, 064022 (2005)

    Article  ADS  Google Scholar 

  29. Yu, H., Zhu, Z.: Spontaneous absorption of an accelerated hydrogen atom near a conducting plane in vacuum. Phys. Rev. D 74, 044032 (2006)

    Article  ADS  Google Scholar 

  30. Zhang, J.L., Yu, H.W.: Entanglement generation in atoms immersed in a thermal bath of external quantum scalar fields with a boundary. Phys. Rev. A 75, 012101 (2007)

    Article  ADS  Google Scholar 

  31. Zhang, J.L., Yu, H.W.: Unruh effect and entanglement generation for accelerated atoms near a reflecting boundary. Phys. Rev. D 75, 104014 (2007)

    Article  ADS  Google Scholar 

  32. Yu, H., Hu, J.: Detecting modified vacuum fluctuations due to the presence of a boundary by means of the geometric phase. Phys. Rev. A 86, 064103 (2012)

    Article  ADS  Google Scholar 

  33. Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries. Quantum Inf. Process. 15, 3677 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  37. Chaves, R., de Melo, F.: Noisy one-way quantum computations: the role of correlations. Phys. Rev. A 84, 022324 (2011)

    Article  ADS  Google Scholar 

  38. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  39. Benatti, F., Floreanini, R.: Entanglement generation in uniformly accelerating atoms: reexamination of the Unruh effect. Phys. Rev. A 70, 012112 (2004)

    Article  ADS  Google Scholar 

  40. Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  41. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  43. Birrell, N.D., Davies, P.C.W.: Quantum Fields Theory in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  44. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  45. Chen, Q., Zhang, C., Yu, X., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)

    Article  ADS  Google Scholar 

  46. Li, B., Wang, Z.X., Fei, S.M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)

    Article  ADS  Google Scholar 

  47. Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii–Moriya interaction. Phys. Rev. B 78, 214414 (2008)

    Article  ADS  Google Scholar 

  48. Ma, F.W., Liu, S.X., Kong, X.M.: Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii–Moriya interaction. Phys. Rev. A 84, 042302 (2011)

    Article  ADS  Google Scholar 

  49. Song, X.K., Wu, T., Ye, L.: Renormalization of quantum discord and Bell nonlocality in the XXZ model with Dzyaloshinskii–Moriya interaction. Ann. Phys. 349, 220 (2014)

    Article  ADS  Google Scholar 

  50. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  51. Lee, J., Kim, M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236 (2000)

    Article  ADS  Google Scholar 

  52. Zhang, Y.S., Huang, Y.F., Li, C.F., Guo, G.C.: Experimental preparation of the Werner state via spontaneous parametric down-conversion. Phys. Rev. A 66, 062315 (2002)

    Article  ADS  Google Scholar 

  53. Skrzypczyk, P., Navascués, M., Cavalcanti, D.: Quantifying einstein-podolsky-rosen steering. Phys. Rev. Lett. 112, 180404 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Zhiming Huang was supported by the Science Foundation for Young Teachers of Wuyi University (2015zk01) and the Doctoral Research Foundation of Wuyi University (2017BS07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z. Dynamics of quantum correlation of atoms immersed in a thermal quantum scalar fields with a boundary. Quantum Inf Process 17, 221 (2018). https://doi.org/10.1007/s11128-018-1994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1994-7

Keywords

Navigation