Abstract
Number state filtering in coherent states leads to sub-Poissonian photon statistics. These states are more suitable for phase estimation when compared with the coherent states. Nonclassicality of these states is quantified in terms of the negativity of the Wigner function and the entanglement potential. Filtering of the vacuum from a coherent state is almost like the photon addition. However, filtering makes the state more resilient against dissipation than photon addition. Vacuum state filtered coherent states perform better than the photon-added coherent states for a two-way quantum key distribution protocol. A scheme to generate these states in multi-photon atom–field interaction is presented.











Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492–497 (1991). https://doi.org/10.1103/PhysRevA.43.492
Alam, N., Verma, A., Pathak, A.: Higher-order nonclassicalities of nite dimensional coherent states: a comparative study. Phys. Lett. A 382(28), 1842–1851 (2018). https://doi.org/10.1016/j.physleta.2018.04.046
Avelar, A., Baseia, B.: Controlled hole burning in the fock space via Raman interaction. Opt. Commun. 239(4), 281–285 (2004). https://doi.org/10.1016/j.optcom.2004.05.043
Avelar, A.T., Baseia, B.: Controlled hole burning in fock space via resonant interaction. Phys. Rev. A 72, 025801 (2005). https://doi.org/10.1103/PhysRevA.72.025801
Baseia, B., Granja, S.C.G., Marques, G.C.: Intermediate number coherent state of the quantized radiation field. Phys. Scr. 55(6), 719 (1997). http://stacks.iop.org/1402-4896/55/i=6/a=012
Baseia, B., Malbouisson, J.M.C.: Hole burning in the fock space: from single to several holes. Chin. Phys. Lett. 18(11), 1467 (2001). http://stacks.iop.org/0256-307X/18/i=11/a=313
Baseia, B., Moussa, M., Bagnato, V.: Hole burning in fock space. Phys. Lett. A 240(6), 277–281 (1998). https://doi.org/10.1016/S0375-9601(98)00044-9
Bishop, R.F., Vourdas, A.: Displaced and squeezed parity operator: its role in classical mappings of quantum theories. Phys. Rev. A 50, 4488–4501 (1994). https://doi.org/10.1103/PhysRevA.50.4488
Cooper, M., Slade, E., Karpiski, M., Smith, B.J.: Characterization of conditional state-engineering quantum processes by coherent state quantum process tomography. New J. Phys. 17(3), 033041 (2015). http://stacks.iop.org/1367-2630/17/i=3/a=033041
Dodonov, V., Malkin, I., Man’ko, V.: Even and odd coherent states and excitations of a singular oscillator. Physica 72(3), 597–615 (1974). https://doi.org/10.1016/0031-8914(74)90215-8
Escher, B.M., Avelar, A.T., da Rocha Filho, T.M., Baseia, B.: Controlled hole burning in the fock space via conditional measurements on beam splitters. Phys. Rev. A 70, 025801 (2004). https://doi.org/10.1103/PhysRevA.70.025801
Gerry, C., Benmoussa, A.: Hole burning in the fock space of optical fields. Phys. Lett. A 303(1), 30–36 (2002). https://doi.org/10.1016/S0375-9601(02)01199-4
Gerry, C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)
Gerry, C.C.: Conditional state generation in a dispersive atom-cavity field interaction with a continuous external pump field. Phys. Rev. A 65, 063801 (2002). https://doi.org/10.1103/PhysRevA.65.063801
Ghosh, H., Gerry, C.C.: Measurement-induced nonclassical states of the Jaynes–Cummings model. J. Opt. Soc. Am. B 14(11), 2782–2787 (1997). https://doi.org/10.1364/JOSAB.14.002782
Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963). https://doi.org/10.1103/PhysRev.131.2766
Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963). https://doi.org/10.1103/PhysRev.130.2529
Kim, M.S., Son, W., Bužek, V., Knight, P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002). https://doi.org/10.1103/PhysRevA.65.032323
Lee, C.T.: Theorem on nonclassical states. Phys. Rev. A 52, 3374–3376 (1995). https://doi.org/10.1103/PhysRevA.52.3374
Lombardi, E., Sciarrino, F., Popescu, S., De Martini, F.: Teleportation of a one-photon qubit. Phys. Rev. Lett. 88, 070402 (2002). https://doi.org/10.1103/PhysRevLett.88.070402
Malbouisson, J., Baseia, B.: Controlled hole burning in the photon-number distribution of field states in a cavity. Phys. Lett. A 290(5), 234–238 (2001). https://doi.org/10.1016/S0375-9601(01)00690-9
Mandel, L.: Non-classical states of the electromagnetic field. Phys. Scr. 1986(T12), 34 (1986). http://stacks.iop.org/1402-4896/1986/i=T12/a=005
Meher, N., Sivakumar, S., Panigrahi, P.K.: Duality and quantum state engineering in cavity arrays. Sci. Rep. 7(1), 9251 (2017). https://doi.org/10.1038/s41598-017-08569-8
Miranda, M., Mundarain, D.: Two-way QKD with single-photon-added coherent states. Quantum Inf. Process. 16(12), 298 (2017). https://doi.org/10.1007/s11128-017-1752-2
Miranowicz, A., Piatek, K., Tanaś, R.: Coherent states in a finite-dimensional Hilbert space. Phys. Rev. A 50, 3423–3426 (1994). https://doi.org/10.1103/PhysRevA.50.3423
Miranowicz, A., Paprzycka, M., Pathak, A., Nori, F.: Phase-space interference of states optically truncated by quantum scissors: Generation of distinct superpositions of qudit coherent states by displacement of vacuum. Phys. Rev. A 89, 033812 (2014). https://doi.org/10.1103/PhysRevA.89.033812
Pathak, A., Ghatak, A.: Classical light vs. nonclassical light: characterizations and interesting applications. J. Electromagn. Waves Appl. 32(2), 229–264 (2018). https://doi.org/10.1080/09205071.2017.1398109
Pegg, D.T., Phillips, L.S., Barnett, S.M.: Optical state truncation by projection synthesis. Phys. Rev. Lett. 81, 1604–1606 (1998). https://doi.org/10.1103/PhysRevLett.81.1604
Pinheiro, P.V.P., Ramos, R.V.: Quantum communication with photon-added coherent states. Quantum Inf. Process. 12(1), 537–547 (2013). https://doi.org/10.1007/s11128-012-0400-0
Sanaka, K., Resch, K.J., Zeilinger, A.: Filtering out photonic fock states. Phys. Rev. Lett. 96, 083601 (2006). https://doi.org/10.1103/PhysRevLett.96.083601
Sivakumar, S.: Truncated coherent states and photon-addition. Int. J. Theor. Phys. 53(5), 1697–1709 (2014). https://doi.org/10.1007/s10773-013-1967-7
Song, K.H., Lu, D.H., Zhang, W.J., Guo, G.C.: Teleportation of a superposition of zero- and one-photon and entangled photon states. Opt. Commun. 207(1), 219–225 (2002). https://doi.org/10.1016/S0030-4018(02)01487-6
Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277–279 (1963). https://doi.org/10.1103/PhysRevLett.10.277
Takahashi, H., Wakui, K., Suzuki, S., Takeoka, M., Hayasaka, K., Furusawa, A., Sasaki, M.: Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. Phys. Rev. Lett. 101, 233605 (2008). https://doi.org/10.1103/PhysRevLett.101.233605
Tan, S.M., Walls, D.F., Collett, M.J.: Nonlocality of a single photon. Phys. Rev. Lett. 66, 252–255 (1991). https://doi.org/10.1103/PhysRevLett.66.252
Wang, D., Li, M., Zhu, F., Yin, Z.Q., Chen, W., Han, Z.F., Guo, G.C., Wang, Q.: Quantum key distribution with the single-photon-added coherent source. Phys. Rev. A 90, 062315 (2014). https://doi.org/10.1103/PhysRevA.90.062315
Wei, T.C., Nemoto, K., Goldbart, P.M., Kwiat, P.G., Munro, W.J., Verstraete, F.: Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 67, 022110 (2003). https://doi.org/10.1103/PhysRevA.67.022110
Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932). https://doi.org/10.1103/PhysRev.40.749
Zagury, N., de Toledo Piza, A.F.R.: Large correlation effects of small perturbations by preselection and postselection of states. Phys. Rev. A 50, 2908–2914 (1994). https://doi.org/10.1103/PhysRevA.50.2908
Zou, C.L., Jiang, L., Zou, X.B., Guo, G.C.: Filtration and extraction of quantum states from classical inputs. Phys. Rev. A 94, 013841 (2016). https://doi.org/10.1103/PhysRevA.94.013841
Zubairy, M.S., Yeh, J.J.: Photon statistics in multiphoton absorption and emission processes. Phys. Rev. A 21, 1624–1631 (1980). https://doi.org/10.1103/PhysRevA.21.1624
Acknowledgements
One of the authors (NM) acknowledges the research fellowship from the Department of Atomic Energy, Government of India.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Meher, N., Sivakumar, S. Number state filtered coherent states. Quantum Inf Process 17, 233 (2018). https://doi.org/10.1007/s11128-018-1995-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1995-6