Skip to main content
Log in

Number state filtered coherent states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Number state filtering in coherent states leads to sub-Poissonian photon statistics. These states are more suitable for phase estimation when compared with the coherent states. Nonclassicality of these states is quantified in terms of the negativity of the Wigner function and the entanglement potential. Filtering of the vacuum from a coherent state is almost like the photon addition. However, filtering makes the state more resilient against dissipation than photon addition. Vacuum state filtered coherent states perform better than the photon-added coherent states for a two-way quantum key distribution protocol. A scheme to generate these states in multi-photon atom–field interaction is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492–497 (1991). https://doi.org/10.1103/PhysRevA.43.492

    Article  ADS  Google Scholar 

  2. Alam, N., Verma, A., Pathak, A.: Higher-order nonclassicalities of nite dimensional coherent states: a comparative study. Phys. Lett. A 382(28), 1842–1851 (2018). https://doi.org/10.1016/j.physleta.2018.04.046

  3. Avelar, A., Baseia, B.: Controlled hole burning in the fock space via Raman interaction. Opt. Commun. 239(4), 281–285 (2004). https://doi.org/10.1016/j.optcom.2004.05.043

    Article  ADS  Google Scholar 

  4. Avelar, A.T., Baseia, B.: Controlled hole burning in fock space via resonant interaction. Phys. Rev. A 72, 025801 (2005). https://doi.org/10.1103/PhysRevA.72.025801

    Article  ADS  Google Scholar 

  5. Baseia, B., Granja, S.C.G., Marques, G.C.: Intermediate number coherent state of the quantized radiation field. Phys. Scr. 55(6), 719 (1997). http://stacks.iop.org/1402-4896/55/i=6/a=012

  6. Baseia, B., Malbouisson, J.M.C.: Hole burning in the fock space: from single to several holes. Chin. Phys. Lett. 18(11), 1467 (2001). http://stacks.iop.org/0256-307X/18/i=11/a=313

  7. Baseia, B., Moussa, M., Bagnato, V.: Hole burning in fock space. Phys. Lett. A 240(6), 277–281 (1998). https://doi.org/10.1016/S0375-9601(98)00044-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bishop, R.F., Vourdas, A.: Displaced and squeezed parity operator: its role in classical mappings of quantum theories. Phys. Rev. A 50, 4488–4501 (1994). https://doi.org/10.1103/PhysRevA.50.4488

    Article  ADS  MathSciNet  Google Scholar 

  9. Cooper, M., Slade, E., Karpiski, M., Smith, B.J.: Characterization of conditional state-engineering quantum processes by coherent state quantum process tomography. New J. Phys. 17(3), 033041 (2015). http://stacks.iop.org/1367-2630/17/i=3/a=033041

  10. Dodonov, V., Malkin, I., Man’ko, V.: Even and odd coherent states and excitations of a singular oscillator. Physica 72(3), 597–615 (1974). https://doi.org/10.1016/0031-8914(74)90215-8

    Article  ADS  MathSciNet  Google Scholar 

  11. Escher, B.M., Avelar, A.T., da Rocha Filho, T.M., Baseia, B.: Controlled hole burning in the fock space via conditional measurements on beam splitters. Phys. Rev. A 70, 025801 (2004). https://doi.org/10.1103/PhysRevA.70.025801

    Article  ADS  Google Scholar 

  12. Gerry, C., Benmoussa, A.: Hole burning in the fock space of optical fields. Phys. Lett. A 303(1), 30–36 (2002). https://doi.org/10.1016/S0375-9601(02)01199-4

    Article  ADS  MATH  Google Scholar 

  13. Gerry, C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  14. Gerry, C.C.: Conditional state generation in a dispersive atom-cavity field interaction with a continuous external pump field. Phys. Rev. A 65, 063801 (2002). https://doi.org/10.1103/PhysRevA.65.063801

    Article  ADS  Google Scholar 

  15. Ghosh, H., Gerry, C.C.: Measurement-induced nonclassical states of the Jaynes–Cummings model. J. Opt. Soc. Am. B 14(11), 2782–2787 (1997). https://doi.org/10.1364/JOSAB.14.002782

    Article  ADS  Google Scholar 

  16. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963). https://doi.org/10.1103/PhysRev.131.2766

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963). https://doi.org/10.1103/PhysRev.130.2529

    Article  ADS  MathSciNet  Google Scholar 

  18. Kim, M.S., Son, W., Bužek, V., Knight, P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002). https://doi.org/10.1103/PhysRevA.65.032323

    Article  ADS  Google Scholar 

  19. Lee, C.T.: Theorem on nonclassical states. Phys. Rev. A 52, 3374–3376 (1995). https://doi.org/10.1103/PhysRevA.52.3374

    Article  ADS  Google Scholar 

  20. Lombardi, E., Sciarrino, F., Popescu, S., De Martini, F.: Teleportation of a one-photon qubit. Phys. Rev. Lett. 88, 070402 (2002). https://doi.org/10.1103/PhysRevLett.88.070402

    Article  ADS  Google Scholar 

  21. Malbouisson, J., Baseia, B.: Controlled hole burning in the photon-number distribution of field states in a cavity. Phys. Lett. A 290(5), 234–238 (2001). https://doi.org/10.1016/S0375-9601(01)00690-9

    Article  ADS  MATH  Google Scholar 

  22. Mandel, L.: Non-classical states of the electromagnetic field. Phys. Scr. 1986(T12), 34 (1986). http://stacks.iop.org/1402-4896/1986/i=T12/a=005

  23. Meher, N., Sivakumar, S., Panigrahi, P.K.: Duality and quantum state engineering in cavity arrays. Sci. Rep. 7(1), 9251 (2017). https://doi.org/10.1038/s41598-017-08569-8

    Article  ADS  Google Scholar 

  24. Miranda, M., Mundarain, D.: Two-way QKD with single-photon-added coherent states. Quantum Inf. Process. 16(12), 298 (2017). https://doi.org/10.1007/s11128-017-1752-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Miranowicz, A., Piatek, K., Tanaś, R.: Coherent states in a finite-dimensional Hilbert space. Phys. Rev. A 50, 3423–3426 (1994). https://doi.org/10.1103/PhysRevA.50.3423

    Article  ADS  Google Scholar 

  26. Miranowicz, A., Paprzycka, M., Pathak, A., Nori, F.: Phase-space interference of states optically truncated by quantum scissors: Generation of distinct superpositions of qudit coherent states by displacement of vacuum. Phys. Rev. A 89, 033812 (2014). https://doi.org/10.1103/PhysRevA.89.033812

  27. Pathak, A., Ghatak, A.: Classical light vs. nonclassical light: characterizations and interesting applications. J. Electromagn. Waves Appl. 32(2), 229–264 (2018). https://doi.org/10.1080/09205071.2017.1398109

    Article  Google Scholar 

  28. Pegg, D.T., Phillips, L.S., Barnett, S.M.: Optical state truncation by projection synthesis. Phys. Rev. Lett. 81, 1604–1606 (1998). https://doi.org/10.1103/PhysRevLett.81.1604

    Article  ADS  Google Scholar 

  29. Pinheiro, P.V.P., Ramos, R.V.: Quantum communication with photon-added coherent states. Quantum Inf. Process. 12(1), 537–547 (2013). https://doi.org/10.1007/s11128-012-0400-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Sanaka, K., Resch, K.J., Zeilinger, A.: Filtering out photonic fock states. Phys. Rev. Lett. 96, 083601 (2006). https://doi.org/10.1103/PhysRevLett.96.083601

    Article  ADS  Google Scholar 

  31. Sivakumar, S.: Truncated coherent states and photon-addition. Int. J. Theor. Phys. 53(5), 1697–1709 (2014). https://doi.org/10.1007/s10773-013-1967-7

    Article  MATH  Google Scholar 

  32. Song, K.H., Lu, D.H., Zhang, W.J., Guo, G.C.: Teleportation of a superposition of zero- and one-photon and entangled photon states. Opt. Commun. 207(1), 219–225 (2002). https://doi.org/10.1016/S0030-4018(02)01487-6

    Article  ADS  Google Scholar 

  33. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277–279 (1963). https://doi.org/10.1103/PhysRevLett.10.277

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Takahashi, H., Wakui, K., Suzuki, S., Takeoka, M., Hayasaka, K., Furusawa, A., Sasaki, M.: Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. Phys. Rev. Lett. 101, 233605 (2008). https://doi.org/10.1103/PhysRevLett.101.233605

    Article  ADS  Google Scholar 

  35. Tan, S.M., Walls, D.F., Collett, M.J.: Nonlocality of a single photon. Phys. Rev. Lett. 66, 252–255 (1991). https://doi.org/10.1103/PhysRevLett.66.252

    Article  ADS  Google Scholar 

  36. Wang, D., Li, M., Zhu, F., Yin, Z.Q., Chen, W., Han, Z.F., Guo, G.C., Wang, Q.: Quantum key distribution with the single-photon-added coherent source. Phys. Rev. A 90, 062315 (2014). https://doi.org/10.1103/PhysRevA.90.062315

    Article  ADS  Google Scholar 

  37. Wei, T.C., Nemoto, K., Goldbart, P.M., Kwiat, P.G., Munro, W.J., Verstraete, F.: Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 67, 022110 (2003). https://doi.org/10.1103/PhysRevA.67.022110

    Article  ADS  Google Scholar 

  38. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932). https://doi.org/10.1103/PhysRev.40.749

    Article  ADS  MATH  Google Scholar 

  39. Zagury, N., de Toledo Piza, A.F.R.: Large correlation effects of small perturbations by preselection and postselection of states. Phys. Rev. A 50, 2908–2914 (1994). https://doi.org/10.1103/PhysRevA.50.2908

    Article  ADS  Google Scholar 

  40. Zou, C.L., Jiang, L., Zou, X.B., Guo, G.C.: Filtration and extraction of quantum states from classical inputs. Phys. Rev. A 94, 013841 (2016). https://doi.org/10.1103/PhysRevA.94.013841

    Article  ADS  Google Scholar 

  41. Zubairy, M.S., Yeh, J.J.: Photon statistics in multiphoton absorption and emission processes. Phys. Rev. A 21, 1624–1631 (1980). https://doi.org/10.1103/PhysRevA.21.1624

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

One of the authors (NM) acknowledges the research fellowship from the Department of Atomic Energy, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meher, N., Sivakumar, S. Number state filtered coherent states. Quantum Inf Process 17, 233 (2018). https://doi.org/10.1007/s11128-018-1995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1995-6

Keywords

Navigation