Skip to main content
Log in

A minimal set of measurements for qudit-state tomography based on unambiguous discrimination

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum-state tomography (QST) is a fundamental task for reconstructing unknown quantum state from statistics of measurements. We propose a qudit-state tomography based on unambiguous discrimination (UD) of d linearly independent pure states. We then prove that our proposal for QST provides a minimal set of measurements. Our proposal can be used in any finite dimension, and our strategy can be realized by a projective measurement on a system combined with a d-dimensional auxiliary system. In addition, we present another method to improve previously known UD QST of pure quantum state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stokes, G.C.: On the composition and resolution of streams of polarized light from different sources. Trans. Camb. Philos. Soc. 9, 399 (1852)

    ADS  Google Scholar 

  2. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Amsterdam (1995)

    MATH  Google Scholar 

  3. James, D.F.V., Kwiat, P.G., Munro, W.J., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  4. Thew, R.T., Nemoto, K., White, A.G., Munro, W.J.: Qudit quantum-state tomography. Phys. Rev. A 66, 012303 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  6. Paris, M., Řeháček, J.: Quantum State Estimation. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  7. Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys. A Math. Gen. 14, 3241 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  8. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Prugovečki, E.: Information-theoretical aspects of quantum measurement. Int. J. Theor. Phys. 16, 321 (1977)

    Article  MATH  Google Scholar 

  11. Caves, C.M., Fuchs, C.A., Schack, R.: Unknown quantum states: the quantum de Finetti representation. J. Math. Phys. 43, 4537 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Lemmens, P.W.H., Seidel, J.J.: Equiangular lines. J. Alegebra 24, 494 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Scott, A.J., Grassl, M.: Symmetric informationally complete positive-operator-valued measures: a new computer study. J. Math. Phys. 51, 042203 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Gour, G., Kalev, A.: Construction of all general symmetric informationally complete measurements. J. Phys. A Math. Theor. 47, 335302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kalev, A., Gour, G.: Mutually unbiased measurements in finite dimensions. New J. Phys. 16, 053038 (2014)

    Article  ADS  Google Scholar 

  17. Salazar, R., Delgado, A.: Quantum tomography via unambiguous state discrimination. Phys. Rev. A 86, 012118 (2012)

    Article  ADS  Google Scholar 

  18. Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  19. Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  20. Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  21. Jaeger, G., Shimony, A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 197, 83 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Rudolph, T., Spekkens, R.W., Turner, P.S.: Unambiguous discrimination of mixed states. Phys. Rev. A 68, 010301(R) (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. Herzog, U., Bergou, J.A.: Optimum unambiguous discrimination of two mixed quantum states. Phys. Rev. A 71, 050301(R) (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Pang, S., Wu, S.: Optimum unambiguous discrimination of linearly independent pure states. Phys. Rev. A 80, 052320 (2009)

    Article  ADS  Google Scholar 

  26. Kleinmann, M., Kampermann, H., Bruß, D.: Structural approach to unambiguous discrimination of two mixed quantum states. J. Math. Phys. 51, 032201 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Sugimoto, H., Hashimoto, T., Horibe, M., Hayashi, A.: Complete solution for unambiguous discrimination of three pure states with real inner products. Phys. Rev. A 82, 032338 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Bergou, J.A., Futschik, U., Feldman, E.: Optimal Unambiguous Discrimination of Pure Quantum States. Phys. Rev. Lett. 108, 250502 (2012)

    Article  ADS  Google Scholar 

  29. Ha, D., Kwon, Y.: Analysis of optimal unambiguous discrimination of three pure quantum states. Phys. Rev. A 91, 062312 (2015)

    Article  ADS  Google Scholar 

  30. Adams, W.W., Goldstein, L.J.: Introduction to Number Theory. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  32. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  33. Finkelstein, J.: Pure-state informationally complete and “really” complete measurements. Phys. Rev. A 70, 052107 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF2015R1D1A1A01060795).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghun Kwon.

Appendices

A Proof of Lemma 1

Proof

Let r be an integer in \(\mathbb {Z}_{g}\). Then we have \(|\mathbb {Z}_{d}^{m,r}|\le n\) because \(nm+r\equiv r(\mathrm{mod}\ d)\). If two integers \(k_{1},k_{2}\in \mathbb {Z}_{n}\) satisfy \(k_{1}<k_{2}\) and \(k_{1}m+r\equiv k_{2}m+r(\mathrm{mod}\ d)\), \(k_{2}-k_{1}\) should be a multiple of n because \((k_{2}-k_{1})m \equiv 0(\mathrm{mod}\ d)\). However, this is a contradiction since \(0<k_{2}-k_{1}<n\). Therefore, we have \(|\mathbb {Z}_{d}^{m,r}|=n\) and \(\mathbb {Z}_{d}^{m,r}=\{z_{d,k}^{m,r}\}_{k\in \mathbb {Z}_{n}}\).

Let \(r_{1},r_{2}\in \mathbb {Z}_{g}\) be two integers satisfying \( r_{1}<r_{2}\). Then we get \(\mathbb {Z}_{d}^{m,r_{1}}\cap \mathbb {Z}_{d}^{m,r_{2}}=\emptyset \) because if it is a non-empty set, we have \(k_{1}m+r_{1}\equiv k_{2}m+r_{2}(\mathrm{mod}\ d)\) for some different integers \(k_{1}\),\(k_{2}\). This implies \((k_{1}-k_{2})m\equiv r_{2}-r_{1}(\mathrm{mod}\ d)\), which induces the following contradiction

$$\begin{aligned} g\le \mathrm{gcd}((k_{1}-k_{2})m,d)=\mathrm{gcd}(r_{2}-r_{1},d)< g. \end{aligned}$$

This means \(|\bigcup _{r\in \mathbb {Z}_{g}}\mathbb {Z}_{d}^{m,r}|=g\times n=d\) by \(|\mathbb {Z}_{d}^{m,r}|=n\). Therefore, we have \(\bigcup _{r\in \mathbb {Z}_{g}}\mathbb {Z}_{d}^{m,r}=\mathbb {Z}_{d}\) by \(|\mathbb {Z}_{d}|=d\).\(\square \)

B Derivation of Eq. (14)

Proof

Since \(d-n\) pure states \(|\psi _{i}\rangle \) except n pure states \(|\psi _{x_{k}}\rangle \) are comprised by \(d-n\) pure states \(|e_{i}\rangle \) without n pure states \(|e_{x_{k}}\rangle \), the following relation holds.

$$\begin{aligned} \sum _{k,k'\in \mathbb {Z}_{n}}\tilde{\rho }_{{x}_{k}{x}_{k'}}|\psi _{x_{k}}\rangle \!\langle \psi _{x_{k'}}| ={\Pi }\rho {\Pi }=\sum _{k,k'\in \mathbb {Z}_{n}}{\rho }_{{x}_{k}{x}_{k'}}|e_{x_{k}}\rangle \!\langle e_{x_{k'}}|, \end{aligned}$$
(36)

where

$$\begin{aligned} {\Pi }=\sum _{k\in \mathbb {Z}_{n}}|e_{x_{k}}\rangle \!\langle e_{x_{k}}|. \end{aligned}$$
(37)

By \(|e_{x_{k}}\rangle \) of (13), the right-hand side of the above equation can be expressed as follows.

$$\begin{aligned} {\Pi }\rho {\Pi }= & {} \frac{1}{1-\cos n\phi } \sum _{k,k'\in \mathbb {Z}_{n}}\frac{{\rho }_{{x}_{k}{x}_{k'}}}{2\alpha _{x_{k}}\alpha _{x_{k'}}} \left( |\psi _{x_{k}}\rangle -e^{i\phi }|\psi _{x_{k+1}}\rangle \right) \left( \langle \psi _{x_{k'}}|-e^{-i\phi }\langle \psi _{x_{k'+1}}|\right) \nonumber \\= & {} \frac{1}{1-\cos n\phi }\sum _{k,k'\in \mathbb {Z}_{n}}(a_{kk'}-b_{kk'})|\psi _{x_{k+1}}\rangle \!\langle \psi _{x_{k'+1}}|, \end{aligned}$$
(38)

where

$$\begin{aligned} a_{kk'}=\frac{\rho _{x_{k}x_{k'}}}{2\alpha _{x_{k}}\alpha _{x_{k'}}} +\frac{\rho _{x_{k+1}x_{k'+1}}}{2\alpha _{x_{k+1}}\alpha _{x_{k'+1}}},\quad b_{kk'}=\frac{e^{i\phi }\rho _{x_{k}x_{k'+1}}}{2\alpha _{x_{k}}\alpha _{x_{k'+1}}} +\frac{e^{-i\phi }\rho _{x_{k+1}x_{k'}}}{2\alpha _{x_{k+1}}\alpha _{x_{k'}}}. \end{aligned}$$
(39)

Therefore, \(\tilde{\rho }_{x_{k+1}x_{k+1}}\) becomes \((a_{kk}-b_{kk})/(1-\cos n\phi )\). \(\square \)

C Derivation of Eq. (23)

Proof

Since \(d-2\) pure states \(|\psi _{i}\rangle \) excluding two pure states \(|\psi _{x}\rangle \),\(|\psi _{y}\rangle \) are comprised by \(d-2\) pure states \(|e_{i}\rangle \) except two pure states \(|e_{x}\rangle \),\(|e_{y}\rangle \), the following relation holds:

$$\begin{aligned} \sum _{i,j\in \{x,y\}}\tilde{\rho }_{ij}|\psi _{i}\rangle \!\langle \psi _{j}| ={\Pi }\rho {\Pi }=\sum _{i,j\in \{x,y\}}{\rho }_{ij}|e_{i}\rangle \!\langle e_{j}|, \end{aligned}$$
(40)

where

$$\begin{aligned} {\Pi }=|e_{x}\rangle \!\langle e_{x}|+|e_{y}\rangle \!\langle e_{y}|. \end{aligned}$$
(41)

Using (22), \(|e_{x}\rangle \) and \(|e_{y}\rangle \) are expressed by \(|\psi _{x}\rangle ,|\psi _{y}\rangle \) as follows:

$$\begin{aligned} |e_{x}\rangle =\frac{1}{(1+i)\beta _{x}}(|\psi _{x}\rangle +i|\psi _{y}\rangle ),\quad |e_{y}\rangle =\frac{1}{(1+i)\beta _{y}}(|\psi _{x}\rangle -|\psi _{y}\rangle ). \end{aligned}$$
(42)

Then, by (42) the right-hand side of (40) is expressed as follows.

$$\begin{aligned} {\Pi }\rho {\Pi }= & {} \frac{\rho _{xx}}{2\beta _{x}^{2}}(|\psi _{x}\rangle +i|\psi _{y}\rangle )(\langle \psi _{x}|-i\langle \psi _{y}|) +\frac{\rho _{yy}}{2\beta _{y}^{2}}(|\psi _{x}\rangle -|\psi _{y}\rangle )(\langle \psi _{x}|-\langle \psi _{y}|)\\&+\,\frac{\rho _{xy}}{2\beta _{x}\beta _{y}}(|\psi _{x}\rangle +i|\psi _{y}\rangle )(\langle \psi _{x}|-\langle \psi _{y}|)\\&+\frac{\rho _{yx}}{2\beta _{x}\beta _{y}}(|\psi _{x}\rangle -|\psi _{y}\rangle )(\langle \psi _{x}|-i\langle \psi _{y}|)\\= & {} \left[ \frac{\rho _{xx}}{2\beta _{x}^{2}}+\frac{\rho _{yy}}{2\beta _{y}^{2}}+\frac{\rho _{xy}+\rho _{yx}}{2\beta _{x}\beta _{y}}\right] |\psi _{x}\rangle \!\langle \psi _{x}|\\&+\left[ \frac{\rho _{xx}}{2\beta _{x}^{2}}+\frac{\rho _{yy}}{2\beta _{y}^{2}}-\frac{i\rho _{xy}-i\rho _{yx}}{2\beta _{x}\beta _{y}}\right] |\psi _{y}\rangle \!\langle \psi _{y}|\\&-\,\left[ \frac{i\rho _{xx}}{2\beta _{x}^{2}}+\frac{\rho _{yy}}{2\beta _{y}^{2}}+\frac{\rho _{xy}+i\rho _{yx}}{2\beta _{x}\beta _{y}}\right] |\psi _{x}\rangle \!\langle \psi _{y}|\\&+\left[ \frac{i\rho _{xx}}{2\beta _{x}^{2}}-\frac{\rho _{yy}}{2\beta _{y}^{2}}+\frac{i\rho _{xy}-\rho _{yx}}{2\beta _{x}\beta _{y}}\right] |\psi _{y}\rangle \!\langle \psi _{x}|. \end{aligned}$$

The above equation provides (23). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, D., Kwon, Y. A minimal set of measurements for qudit-state tomography based on unambiguous discrimination. Quantum Inf Process 17, 232 (2018). https://doi.org/10.1007/s11128-018-1997-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1997-4

Keywords

Navigation