Skip to main content
Log in

Quantum information processing in a decoherence-free subspace for the \(\hat{\sigma }_{x}\)-type collective noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on a cavity-assisted single-photon input–output process, we first construct the hybrid controlled-phase-flip gate between photon and the single-logic qubit in decoherence-free subspaces. And we also achieve the universal single-qubit logic operations. We realize the distributed quantum information processing with the hybrid controlled-phase-flip gate and single-qubit logic operations. Finally, we discuss the experimental feasibility of our scheme, which is satisfied with currently available technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Paul, G.K., Andrew, J.B., Joseph, B.A., Andrew, G.W.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)

    Article  Google Scholar 

  2. Kielpinski, D., Meyer, V., Rowe, M.A., Sackett, C.A., Itano, W.M., Monro, C., Wineland, D.J.: A decoherence-free quantum memory using trapped ions. Science 291, 1013–1015 (2001)

    Article  ADS  Google Scholar 

  3. Palma, G.M., Suominen, K., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. A 452, 567–584 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Duan, L.M., Guo, G.C.: Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett. 79, 1953–1956 (1997)

    Article  ADS  Google Scholar 

  5. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

    Article  ADS  Google Scholar 

  6. Beige, A., Braun, D., Tregenna, B., Knight, P.L.: Quantum computing using dissipation to remain in a decoherence-free subspace. Phys. Rev. Lett. 85, 1762–1765 (2000)

    Article  ADS  Google Scholar 

  7. Kumagai, H., Yamamoto, T., Koashi, M., Imoto, N.: Robustness of quantum communication based on a decoherence-free subspace using a counter-propagating weak coherent light pulse. Phys. Rev. A 87, 052325 (2013)

    Article  ADS  Google Scholar 

  8. Feng, M.: Grover search with pairs of trapped ions. Phys. Rev. A 63, 052308 (2001)

    Article  ADS  Google Scholar 

  9. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature (London) 417, 709–711 (2002)

    Article  ADS  Google Scholar 

  10. Xue, P., Xiao, Y.F.: Universal quantum computation in decoherence-free subspace with neutral atoms. Phys. Rev. Lett. 97, 140501 (2006)

    Article  ADS  Google Scholar 

  11. Wei, H., Deng, Z.J., Zhang, X.L., Feng, M.: Transfer and teleportation of quantum states encoded in decoherence-free subspace. Phys. Rev. A 76, 054304 (2007)

    Article  ADS  Google Scholar 

  12. Wang, C., Wang, T.J., Zhang, Y., Jiao, R.Z., Jin, G.S.: Concentration of entangled nitrogen-vacancy centers in decoherence free subspace. Opt. Express 22, 1551–1559 (2014)

    Article  ADS  Google Scholar 

  13. Liu, A.P., Cheng, L.Y., Chen, L., Su, S.L., Wang, H.F., Zhang, S.: Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator. Opt. Commun. 313, 180–185 (2014)

    Article  ADS  Google Scholar 

  14. Hu, S., Cui, W.X., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S.: Multi-qubit non-adiabatic holonomic controlled quantum gates in decoherence-free subspaces. Quantum Inf. Process. 15, 3651–3661 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Wu, L.A., Zanardi, P., Lidar, D.A.: Holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett. 95, 130501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. Aolita, L., Davidovich, L., Kim, K., Häffner, H.: Universal quantum computation in decoherence-free subspaces with hot trapped ions. Phys. Rev. Lett. 75, 052337 (2007)

    ADS  Google Scholar 

  17. Xu, G.F., Zhang, J., Tong, D.M., Sjöqvist, E., Kwek, L.C.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett. 109, 170501 (2012)

    Article  ADS  Google Scholar 

  18. Song, X.K., Zhang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)

    Article  ADS  Google Scholar 

  19. Zhao, P.Z., Xu, G.F., Ding, Q.M., Sjqvist, E., Tong, D.M.: Single-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspaces. Phys. Rev. A 95, 062310 (2017)

    Article  ADS  Google Scholar 

  20. Zwerger, M., Lanyon, B.P., Northup, T.E., Muschik, C.A., Dür, W., Sangouard, N.: Quantum repeaters based on trapped ions with decoherence-free subspace encoding. Quantum Sci. Technol. 2, 044001 (2017)

    Article  ADS  Google Scholar 

  21. Xu, G.F., Long, G.L.: Universal nonadiabatic geometric gates in two-qubit decoherence-free subspaces. Sci. Rep. 4, 6841 (2014)

    Google Scholar 

  22. Wang, Z.H., Ji, Y.J., Li, Y., Zhou, D.L.: Dissipation and decoherence induced by collective dephasing in a coupled-qubit system with a common bath. Phys. Rev. A 91, 013838 (2015)

    Article  ADS  Google Scholar 

  23. Carnio, E.G., Buchleitner, A., Gessner, M.: Generating and protecting correlated quantum states under collective dephasing. New J. Phys. 18, 073010 (2016)

    Article  ADS  Google Scholar 

  24. He, X.L., Yang, C.P.: Transferring multiqubit entanglement onto memory qubits in a decoherence-free subspace. Quantum Inf. Process. 16, 67 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Zhang, Z.R., Li, C.Y., Wu, C.W., Dai, H.Y., Li, C.Z.: Universal quantum computation in a decoherencefree subspace for the \(\hat{\sigma }_{x}\)-type collective noise with superconducting charge qubits. Phys. Rev. A 86, 042320 (2012)

    Article  ADS  Google Scholar 

  26. Zhang, Z.R., Wu, C.W., Li, C.Y., Dai, H.Y., Li, C.Z.: Universal quantum computation in a decoherencefree subspace for collective relaxation with transmon qubits. Phys. Rev. A 87, 062325 (2013)

    Article  ADS  Google Scholar 

  27. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  28. Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)

    Article  ADS  Google Scholar 

  29. Chen, Q., Feng, M.: Quantum-information processing in decoherence-free subspace with low-\(\mathit{Q}\) cavities. Phys. Rev. A 82, 052329 (2010)

    Article  ADS  Google Scholar 

  30. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  31. Phillips, C.R., Fejer, M.M.: Adiabatic optical parametric oscillators: steady-state and dynamical behavior. Opt. Express 20, 2466–2482 (2012)

    Article  ADS  Google Scholar 

  32. Auffèves-Garnier, A., Simon, C., Gérard, J.M., Poizat, J.P.: Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. Phys. Rev. A 75, 053823 (2007)

    Article  ADS  Google Scholar 

  33. An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input–output process with respect to low-\(\mathit{Q}\) cavities. Phys. Rev. A 79, 032303 (2009)

    Article  ADS  Google Scholar 

  34. Sauer, J.A., Fortier, K.M., Chang, M.S., Hamley, C.D., Chapman, M.S.: Cavity QED with optically transported atoms. Phys. Rev. A 69, 051804 (2004)

    Article  ADS  Google Scholar 

  35. Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T.W., Bloch, I.: Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003)

    Article  ADS  Google Scholar 

  36. Kuhr, S., Alt, W., Schrader, D., Dotsenko, I., Miroshnychenko, Y., Rosenfeld, W., Khudaverdyan, M., Gomer, V., Rauschenbeutel, A., Meschede, D.: Coherence properties and quantum state transportation in an optical conveyor belt. Phys. Rev. Lett. 91, 213002 (2003)

    Article  ADS  Google Scholar 

  37. Pachos, J., Walther, H.: Quantum computation with trapped ions in an optical cavity. Phys. Rev. Lett. 89, 187903 (2002)

    Article  ADS  Google Scholar 

  38. Goto, H., Ichimura, K.: Multiqubit controlled unitary gate by adiabatic passage with an optical cavity. Phys. Rev. A 70, 012305 (2004)

    Article  ADS  Google Scholar 

  39. Xiao, Y.F., Lin, X.M., Gao, J., Yang, Y., Han, Z.F., Guo, G.C.: Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A 70, 042314 (2004)

    Article  ADS  Google Scholar 

  40. Maunz, P., Puppe, T., Schuster, I., Syassen, N., Pinkse, P.W.H., Rempe, G.: Normal-mode spectroscopy of a single-bound-atom–cavity system. Phys. Rev. Lett. 94, 033002 (2005)

    Article  ADS  Google Scholar 

  41. Mei, F., Yu, Y.F., Feng, X.L., Zhu, S.L., Zhang, Z.M.: Optical quantum computation with cavities in the intermediate coupling region. Europhys. Lett. 91, 10001 (2010)

    Article  ADS  Google Scholar 

  42. Xue, D., Zou, J., Li, J.G., Chen, W.Y., Shao, B.: Controlling entanglement between two separated atoms by quantum-jump-based feedback. J. Phys. B: At. Mol. Opt. Phys. 43, 045503 (2010)

    Article  ADS  Google Scholar 

  43. Shao, X.Q., Zheng, T.Y., Zhang, S.: Engineering steady three-atom singlet states via quantum-jumpbased feedback. Phys. Rev. A 85, 042308 (2012)

    Article  ADS  Google Scholar 

  44. Wu, Q.C., Ji, X.: Generation of steady three- and four-dimensional entangled states via quantum-jump-based feedback. Quantum Inf. Process. 12, 3167–3178 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Lim, Y.L., Beige, A., Kwek, L.C.: Repeat-until-success linear optics distributed quantum computing. Phys. Rev. Lett. 95, 030505 (2005)

    Article  ADS  Google Scholar 

  46. Beige, A., Lim, Y.L., Kwek, L.C.: A repeat-until-success quantum computing scheme. New J. Phys. 9, 197 (2007)

    Article  ADS  Google Scholar 

  47. Almut, B., Yuan, L.L., Christian, S.: Multi-photon entanglement from distant single photon sources on demand. J. Mod. Opt. 54, 397–407 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61465013, 11465020, 11165015, 11264042, 11604190, 61575055, and 11647116) and the Project of Jilin Science and Technology Development for Leading Talent of Science and Technology Innovation in Middle and Young and Team Project (Grant No. 20160519022JH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shutian Liu or Hong-Fu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, WX., Liu, S., Zhang, S. et al. Quantum information processing in a decoherence-free subspace for the \(\hat{\sigma }_{x}\)-type collective noise. Quantum Inf Process 17, 235 (2018). https://doi.org/10.1007/s11128-018-1999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1999-2

Keywords

Navigation