Skip to main content
Log in

Fault-tolerant measurement-device-independent quantum key distribution in a decoherence-free subspace

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Two modified measurement-device-independent quantum key distribution protocols based on the decoherence-free subspace are presented in this study. The proposed protocols are tolerant of the fault with collective-rotation noise and collective-dephasing noise. Exploiting the logical qubits comprised by two pairs of entanglement photons in decoherence-free subspace states, the mutually unbiased bases are formed by introducing the spatial degrees of freedom which reduces the experiment difficulty. There are only Bell-state preparation and collective Bell-state measurement needed in our protocols. Moreover, a brief discussion on the security of the proposal in the communication process is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India December 1984), p. 175 (1984)

  2. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  4. Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  5. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  6. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  7. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008)

    Article  ADS  Google Scholar 

  9. Jiang, M.-S., Sun, S.-H., Li, C.-Y., Liang, L.-M.: Wavelength-selected photon-number-splitting attack against plug-and-play quantum key distribution systems with decoy states. Phys. Rev. A 86(3), 032310 (2012)

    Article  ADS  Google Scholar 

  10. Sun, S.-H., Jiang, M.-S., Liang, L.-M.: Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system. Phys. Rev. A 83(6), 062331 (2011)

    Article  ADS  Google Scholar 

  11. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007)

    Article  ADS  Google Scholar 

  12. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  13. Sun, S.-H., Gao, M., Li, C.-Y., Liang, L.-M.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87(5), 052329 (2013)

    Article  ADS  Google Scholar 

  14. Xu, F.: Measurement-device-independent quantum communication with an untrusted source. Phys. Rev. A 92(1), 012333 (2015)

    Article  ADS  Google Scholar 

  15. Dong, C., Zhao, S.-H., Sun, Y.: Measurement-device-independent quantum key distribution with q-plate. Quantum Inf. Process. 14(12), 4575–4584 (2015)

    Article  MathSciNet  Google Scholar 

  16. Dong, C., Zhao, S.H., Shi, L.: Measurement device-independent quantum key distribution with heralded pair coherent state. Quantum Inf. Process. 15(10), 4253–4263 (2016)

    Article  ADS  Google Scholar 

  17. Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.-K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112(19), 190503 (2014)

    Article  ADS  Google Scholar 

  18. Comandar, L.C., LucamariniM, FröhlichB, Dynes, J.F., Sharpe, A.W., Tam, S.W.B., Yuan, Z.L., Penty, R.V., Shields, A.J.: Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat Photon 10(5), 312–315 (2016)

    Article  ADS  Google Scholar 

  19. Tang, G.Z., Sun, S.H., Xu, F.H., Chen, H., Li, C.Y., Liang, L.M.: Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 94(3), 032326 (2016)

    Article  ADS  Google Scholar 

  20. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  21. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722–725 (1996)

    Article  ADS  Google Scholar 

  22. Pan, J.-W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410(6832), 1067–1070 (2001)

    Article  ADS  Google Scholar 

  23. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046–2052 (1996)

    Article  ADS  Google Scholar 

  24. Pan, J., Zhou, L., Gu, S.-P., Wang, X.-F., Sheng, Y.-B., Wang, Q.: Efficient entanglement concentration for concatenated GreenbergerCHorneCZeilinger state with the cross-Kerr nonlinearity. Quantum Inf. Process. 15(4), 1669–1687 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91(8), 087901 (2003)

    Article  ADS  Google Scholar 

  26. Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92(1), 017901 (2004)

    Article  ADS  Google Scholar 

  27. Wang, X.B.: Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A 72(5), 050304 (2005)

    Article  ADS  Google Scholar 

  28. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  29. Li, C.Y., Zhang, Z.R., Sun, S.H., Jiang, M.S., Liang, L.M.: Logic-qubit controlled-NOT gate of decoherence-free subspace with nonlinear quantum optics. J. Opt. Soc. Am. B Opt. Phys. 30(7), 1872–1877 (2013)

    Article  ADS  Google Scholar 

  30. Li, D.-F., Wang, R.-J., Zhang, F.-L., Baagyere, E., Qin, Z., Xiong, H., Zhan, H.: A noise immunity controlled quantum teleportation protocol. Quantum Inf. Process. 15(11), 4819–4837 (2016)

    Article  ADS  Google Scholar 

  31. Chang, C.-H., Yang, C.-W., Hwang, T.: Trojan horse attack free fault-tolerant quantum key distribution protocols using GHZ states. Int. J. Theor. Phys. 55(9), 3993–4004 (2016)

    Article  MathSciNet  Google Scholar 

  32. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306–3309 (1997)

    Article  ADS  Google Scholar 

  33. Ivonovic, I.D.: Geometrical description of quantal state determination. J. Phys. A Math. Gen. 14(12), 3241 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  34. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using \(\mathit{d}\)-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)

    Article  ADS  Google Scholar 

  35. Deng, F.-G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68(4), 042315 (2003)

    Article  ADS  Google Scholar 

  36. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93(25), 250502 (2004)

    Article  ADS  Google Scholar 

  37. Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104(16), 160503 (2010)

    Article  ADS  Google Scholar 

  38. Wang, C., He, L., Zhang, Y., Ma, H., Zhang, R.: Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system. Sci. China Phys. Mech. Astron. 56(11), 2054–2058 (2013)

    Article  ADS  Google Scholar 

  39. Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: A quantum gate between a flying optical photon and a single trapped atom. Nature 508(7495), 237–240 (2014)

    Article  ADS  Google Scholar 

  40. Zhang, Q., Yin, J., Chen, T.-Y., Lu, S., Zhang, J., Li, X.-Q., Yang, T., Wang, X.-B., Pan, J.-W.: Experimental fault-tolerant quantum cryptography in a decoherence-free subspace. Phys. Rev. A 73(2), 020301(R) (2006)

    Article  ADS  Google Scholar 

  41. Yin, Z.-Q., Zhao, Y.-B., Zhou, Z.-W., Han, Z.-F., Guo, G.-C.: Decoy states for quantum key distribution based on decoherence-free subspaces. Phys. Rev. A 77(6), 062326 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China, Grant No. 11204377. Specialized Research Fund for the Doctoral Program of Higher Education, Grant No. 20124307120005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CY. Fault-tolerant measurement-device-independent quantum key distribution in a decoherence-free subspace. Quantum Inf Process 17, 287 (2018). https://doi.org/10.1007/s11128-018-2003-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2003-x

Keywords

Navigation