Skip to main content
Log in

Two authenticated quantum dialogue protocols based on three-particle entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose two authenticated quantum dialogue protocols based on three-particle entangled states, which are both completely secure and more efficient. The first controlled quantum dialogue protocol with authentication is creatively proposed, which is secure under not only some famous external attacks but also internal attacks, for example, the dishonest controller’s attack. This protocol has a slightly increasing efficiency and less qubit cost compared to previous protocols. Besides, we present the second authenticated quantum dialogue protocol, which has a high efficiency with 80% by integrating dense coding. This protocol can also resist various well-known attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tosssing. (1984)

  2. Deng, F.-G., Long, G.-L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  3. Deng, F.-G., Long, G.-L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  4. Li, J., et al.: Quantum secure direct communication based on dense coding and detecting eavesdropping with four-particle genuine entangled state. Entropy 17(10), 6743–6752 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Farouk, A., Zakaria, M., Megahed, A., et al.: A generalized architecture of quantum secure direct communication for N disjointed users with authentication. Sci. Rep. 5 (2015)

  6. Cui, Y., Sun, J.: Fixed point theorems for a class of nonlinear operators in hilbert spaces with lattice structure and application. Fix. Point Theory Appl. 2013, 345 (2013). https://doi.org/10.1186/1687-1812-2013-345

    Article  MathSciNet  MATH  Google Scholar 

  7. Dai, X., Yang, F.: Complete controllability of impulsive stochastic integrodifferential systems in hilbert space. Abstr. Appl. Anal. 2013, 279–296 (2013)

    MathSciNet  Google Scholar 

  8. Wang, S.-K., Zha, X.-W., Wu, H.: Controlled secure direct communication with seven-qubit entangled states. Int. J. Theor. Phys. 57(1), 48–58 (2018)

    Article  MATH  Google Scholar 

  9. Li, D., et al.: Fault-tolerant distribution of GHZ states and controlled DSQC based on parity analyses. Opt. Express 25(16), 18581–18591 (2017)

    Article  ADS  Google Scholar 

  10. Lee, H., Lim, J., Yang, H.J.: Quantum direct communication with authentication. Phys. Rev. A 73(4), 042305 (2006)

    Article  ADS  Google Scholar 

  11. Yu, C.-H., Guo, G.-D., Lin, S.: Quantum secure direct communication with authentication using two nonorthogonal states. Int. J. Theor. Phys. 52(6), 1937–1945 (2013)

    Article  MathSciNet  Google Scholar 

  12. Yan, C., et al.: A multiparty controlled bidirectional quantum secure direct communication and authentication protocol based on EPR pairs. Chin. Phys. Lett. 30(6), 060301 (2013)

    Article  ADS  Google Scholar 

  13. Yang, C.-W., Hwang, T., Lin, T.-H.: Modification attack on QSDC with authentication and the improvement. Int. J. Theor. Phys. 52(7), 2230–2234 (2013)

    Article  MathSciNet  Google Scholar 

  14. Jiang, T., Jiang, J., Ling, S.: An algebraic method for quaternion and complex least squares coneigen-problem in quantum mechanics. Appl. Math. Comput. 249, 222–228 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Dong, H., Zhang, Y., Zhang, Y., Yin B.: Generalized bilinear differential operators, binary bell polynomials, and exact periodic wave solution of boiti-leon-manna-pempinelli equation. In Abstract and Applied Analysis (2014)

  16. Chang, Y., et al.: Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59(21), 2541–2546 (2014)

    Article  Google Scholar 

  17. Kang, M.-S., et al.: Controlled mutual quantum entity authentication using entanglement swapping. Chin. Phys. B 24(9), 090306 (2015)

    Article  Google Scholar 

  18. Li, N., et al.: Deterministic secure quantum communication and authentication protocol based on extended GHZ-W state and quantum one-time pad. Int. J. Theor. Phys. 55(8), 3579–3587 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nanvakenari, M., Houshmand, M.: An efficient controlled quantum secure direct communication and authentication by using four particle cluster states. Int. J. Quantum Inf. 15(01), 1750002 (2017)

    Article  MATH  Google Scholar 

  20. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Shi, G.-F., et al.: Quantum secure dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010)

    Article  ADS  Google Scholar 

  22. Man, Z.-X., Xia, Y.-J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680 (2006)

    Article  ADS  Google Scholar 

  23. Xia, Y., et al.: Controlled secure quantum dialogue using a pure entangled GHZ states. Commun. Theor. Phys. 48(5), 841 (2007)

    Article  ADS  Google Scholar 

  24. Xia, Y.-J., Man, Z.-X.: Controlled quantum n-party simultaneous direct communication. Commun. Theor. Phys. 48(1), 79 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. Ye, T.-Y., Jiang, L.-Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

    Article  ADS  Google Scholar 

  26. Chang, C.-H., et al.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process. 14(9), 3515–3522 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kao, S.-H., Hwang, T.: Controlled quantum dialogue robust against conspiring users. Quantum Inf. Process. 15(10), 4313–4324 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Kao, S.-H., Hwang, T.: Controlled quantum dialogue using cluster states. Quantum Inf. Process. 16(5), 139 (2017)

    Article  ADS  MATH  Google Scholar 

  29. Mohapatra, A.K., Balakrishnan, S.: Controller-independent bidirectional quantum direct communication. Quantum Inf. Process. 16(6), 147 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Naseri, M.: An efficient protocol for quantum secure dialogue with authentication by using single photons. In: International Conference on Quantum Information. Optical Society of America (2011)

  31. Shen, D.-S., et al.: Quantum dialogue with authentication based on Bell states. Int. J. Theor. Phys. 52(6), 1825–1835 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lin, C.-Y., Yang, C.-W., Hwang, T.: Authenticated quantum dialogue based on Bell states. Int. J. Theor. Phys. 54(3), 780–786 (2015)

    Article  MATH  Google Scholar 

  33. Xiao, M., Cao, Y.-R., Song, X.-L.: Efficient and secure authenticated quantum dialogue protocols over collective-noise channels. Chin. Phys. Lett. 34(3), 030302 (2017)

    Article  ADS  Google Scholar 

  34. Lin, T.-H., Lin, C.-Y., Hwang, T.: Man-in-the-Middle Attack on quantum dialogue with authentication based on Bell states. Int. J. Theor. Phys. 52(9), 3199–3203 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, Q., Chan, W.-H., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  36. Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  37. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)

    Article  ADS  Google Scholar 

  38. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  39. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

  40. Zhi-Hao, L., Han-Wu, C.: Comment on “Improvement of controlled bidirectional quantum direct communication using a GHZ state”. Chin. Phys. Lett. 30(7), 079901 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Project supported by NSFC (Grant Nos. 61671087, 61272514, 61170272, 61003287, 61572246, 61602232, 61373131), the Fok Ying Tong Education Foundation (Grant No. 131067), the Major Science and Technology Support Program of Guizhou Province under Grant 20183001, Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data (2017BDKFJJ007), the Plan for Scientific Innovation Talents of Henan Province (164100510003) and the Program for Science & Technology Innovation Research Team in Universities of Henan Province (Grant No. 18IRTSTHN014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, JM., Xu, G., Chen, XB. et al. Two authenticated quantum dialogue protocols based on three-particle entangled states. Quantum Inf Process 17, 247 (2018). https://doi.org/10.1007/s11128-018-2005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2005-8

Keywords

Navigation