Skip to main content
Log in

Accelerated and robust population transfer in a transmon qutrit via \(\Delta \)-type driving

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an efficient protocol to implement accelerated and robust population transfer in a transmon qutrit via \(\Delta \)-type driving. By means of stimulated Raman adiabatic passage, we first show an adiabatic population transfer in the qutrit under a two-photon resonance. By taking advantage of the weak level anharmonicity of the qutrit, only two drivings are needed to be applied to the qutrit, forming a \(\Delta \)-type interaction. With the Gaussian-shaped Rabi couplings, target population transfer can be accelerated substantially when compared to the adiabatic process. Moreover, we analyze the negligible leakages and distinct fidelity enhancement with the accessible parameters. The present scheme could offer a promising application in experimentally performing population transfer with the transmon-regime quantum circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)

    Article  ADS  Google Scholar 

  2. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)

    Article  ADS  Google Scholar 

  3. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.-X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wallraff, A., et al.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  5. Niemczyk, T., et al.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772 (2010)

    Article  Google Scholar 

  6. Sun, G., et al.: Population inversion induced by Landau-Zener transition in a strongly driven rf-SQUID. Appl. Phys. Lett. 94, 102502 (2010)

    Article  ADS  Google Scholar 

  7. Shevchenko, S.N., Omelyanchouk, A.N., Il’ichev, E.: Multiphoton transitions in Josephson-junction qubits. Low Temp. Phys. 38, 283 (2012)

    Article  ADS  Google Scholar 

  8. Cho, S.U., Moon, H.S., Chough, Y.-T., Bae, M.-H., Kim, N.: Quantum coherence and population transfer in a driven cascade three-level artificial atom. Phys. Rev. A 89, 053814 (2014)

    Article  ADS  Google Scholar 

  9. Kumar, K.S., Vepsalainen, A., Danilin, S., Paraoanu, G.S.: Stimulated Raman adiabatic passage in a three-level superconducting circuit. Nat. Commun. 7, 10628 (2016)

    Article  ADS  Google Scholar 

  10. Falci, G., et al.: Design of a Lambda system for population transfer in superconducting nanocircuits. Phys. Rev. B 87, 214515 (2013)

    Article  ADS  Google Scholar 

  11. Liu, Y.-X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)

    Article  ADS  Google Scholar 

  12. Zhou, L., Yang, L.-P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111, 103604 (2013)

    Article  ADS  Google Scholar 

  13. Liu, Q.-C., Cai, H., Zhang, Y.-S., Liu, J.-S., Chen, W.: Autler-Townes splitting in Delta-type quantum three-level system. Chin. Phys. Lett. 33, 074205 (2016)

    Article  ADS  Google Scholar 

  14. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339, 1169 (2013)

    Article  ADS  Google Scholar 

  15. Peng, Z.H., et al.: Correlated emission lasing in harmonic oscillators coupled via a single three-level artificial atom. Phys. Rev. Lett. 115, 223603 (2015)

    Article  ADS  Google Scholar 

  16. Dong, P., Yu, L.-B., Zhou, J.: Holonomic quantum computation on microwave photons with all resonant interactions. Laser Phys. Lett. 13, 085201 (2016)

    Article  ADS  Google Scholar 

  17. Liu, Y.-X., Yang, C.-X., Sun, H.-C., Wang, X.-B.: Coexistence of single- and multi-photon processes due to longitudinal couplings between superconducting flux qubits and external fields. New J. Phys. 16, 015031 (2014)

    Article  ADS  Google Scholar 

  18. Koch, J., et al.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)

    Article  ADS  Google Scholar 

  19. Schreier, J.A., et al.: Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77, 180502(R) (2008)

    Article  ADS  Google Scholar 

  20. Abdumalikov Jr., A.A., et al.: Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482 (2013)

    Article  ADS  Google Scholar 

  21. Peterer, M.J., et al.: Coherence and decay of higher energy levels of a superconducting transmon qubit. Phys. Rev. Lett. 114, 010501 (2015)

    Article  ADS  Google Scholar 

  22. Xue, Z.-Y., et al.: Nonadiabatic holonomic quantum computation with dressed-state qubits. Phys. Rev. Appl. 7, 054022 (2017)

    Article  ADS  Google Scholar 

  23. Bianchetti, R., et al.: Control and tomography of a three level superconducting artificial atom. Phys. Rev. Lett. 105, 223601 (2010)

    Article  ADS  Google Scholar 

  24. Schutjens, R., Dagga, F.A., Egger, D.J., Wilhelm, F.K.: Single-qubit gates in frequency-crowded transmon systems. Phys. Rev. A 88, 052330 (2013)

    Article  ADS  Google Scholar 

  25. Chasseur, T., Wilhelm, F.K.: Complete randomized benchmarking protocol accounting for leakage errors. Phys. Rev. A 92, 042333 (2015)

    Article  ADS  Google Scholar 

  26. Economou, S.E., Barnes, E.: Analytical approach to swift nonleaky entangling gates in superconducting qubits. Phys. Rev. B 91, 161405(R) (2015)

    Article  ADS  Google Scholar 

  27. Motzoi, F., Gambetta, J.M., Rebentrost, P., Wilhelm, F.K.: Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett. 103, 110501 (2009)

    Article  ADS  Google Scholar 

  28. Chow, J.M., et al.: Microwave-activated conditional-phase gate for superconducting qubits. New J. Phys. 15, 115012 (2013)

    Article  ADS  Google Scholar 

  29. Ghosh, J., Coppersmith, S.N., Friesen, M.: Pulse sequences for suppressing leakage in single-qubit gate operations. Phys. Rev. B 95, 241307(R) (2017)

    Article  ADS  Google Scholar 

  30. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

  31. Stefano, P.G.D., Paladino, E., D’Arrigo, A., Falci, G.: Population transfer in a Lambda system induced by detunings. Phys. Rev. B 91, 224506 (2015)

    Article  ADS  Google Scholar 

  32. Zhang, Z., Tian, J., Du, J.: Selective population transfer and creation of an arbitrary superposition between quantum states in a \( \Lambda \)-type four-level system by a single linearly chirped pulse. Laser Phys. Lett. 13, 055201 (2016)

    Article  ADS  Google Scholar 

  33. Feng, Z.-B., Li, M.: High-fidelity population transfer in a Josephson three-level atom with optimized level anharmonicity. Opt. Commun. 319, 56 (2014)

    Article  ADS  Google Scholar 

  34. Masuda, S., Rice, S.A.: Rapid coherent control of population transfer in lattice systems. Phys. Rev. A 89, 033621 (2014)

    Article  ADS  Google Scholar 

  35. Shi, Z.C., Wang, W., Yi, X.X.: Population transfer driven by far-off-resonant fields. Opt. Express 24, 21971 (2016)

    Article  ADS  Google Scholar 

  36. Wei, X., Chen, M.-F.: Preparation of multi-qubit W states in multiple resonators coupled by a superconducting qubit via adiabatic passage. Quantum Inf. Process. 14, 2419 (2015)

    Article  ADS  MATH  Google Scholar 

  37. Feng, Z.-B.: Robust quantum state transfer between a Cooper-pair box and diamond nitrogen-vacancy centers. Phys. Rev. A 91, 032307 (2015)

    Article  ADS  Google Scholar 

  38. Xu, H.K., et al.: Coherent population transfer between uncoupled or weakly coupled states in ladder-type superconducting qutrits. Nat. Commun. 7, 11018 (2016)

    Article  ADS  Google Scholar 

  39. Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)

    Article  ADS  Google Scholar 

  40. Giannelli, L., Arimondo, E.: Three-level superadiabatic quantum driving. Phys. Rev. A 89, 033419 (2014)

    Article  ADS  Google Scholar 

  41. Baksic, A., Ribeiro, H., Clerk, A.A.: Speeding up adiabatic quantum state transfer by using dressed states. Phys. Rev. Lett. 116, 230503 (2016)

    Article  ADS  Google Scholar 

  42. del Campo, A.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013)

    Article  Google Scholar 

  43. Zhou, B.B., et al.: Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 13, 330 (2017)

    Article  Google Scholar 

  44. Masuda, S., Rice, S.A.: Fast-forward assisted STIRAP. J. Phys. Chem. A 119, 3479 (2015)

    Article  Google Scholar 

  45. Kang, Y.-H., et al.: Fast generation of W states of superconducting qubits with multiple Schrödinger dynamics. Sci. Rep. 6, 36737 (2016)

    Article  ADS  Google Scholar 

  46. Zhang, Z., et al.: Measuring the Berry phase in a superconducting phase qubit by a shortcut to adiabaticity. Phys. Rev. A 95, 042345 (2017)

    Article  ADS  Google Scholar 

  47. Zhang, X., et al.: Generation of three-qubit Greenberger-Horne-Zeilinger state of superconducting qubits via transitionless quantum driving. Laser Phys. 27, 015202 (2017)

    Article  ADS  Google Scholar 

  48. Yu, L., Xu, J., Wu, J.-L., Ji, X.: Fast generating W state of three superconducting qubits via Lewis-Riesenfeld invariants. Chin. Phys. B 26, 060306 (2017)

    Article  ADS  Google Scholar 

  49. Lu, X.-J., et al.: Nonleaky and accelerated population transfer in a transmon qutrit. Phys. Rev. A 96, 023843 (2017)

    Article  ADS  Google Scholar 

  50. Paik, H., et al.: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011)

    Article  ADS  Google Scholar 

  51. Feng, Z.-B., Yan, R.-Y.: Inducing and detecting geometric phases with superconducting quantum circuits. Physica C 492, 138 (2013)

    Article  ADS  Google Scholar 

  52. Feng, Z.-B., Wang, H.-L., Yan, R.-Y.: Quantum state transfer between an optomechanical cavity and a diamond nuclear spin ensemble. Quantum Inf. Process 15, 3151 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Chen, M.-F., Shen, L.-T., Chen, R.-X., Yang, Z.-B.: Driving to the steady ground-state superposition assisted by spontaneous emission. Phys. Rev. A 92, 033403 (2015)

    Article  ADS  Google Scholar 

  54. Zhang, X.-P., Shen, L.-T., Yin, Z.-Q., Wu, H.-Z., Yang, Z.-B.: Resonator-assisted quantum bath engineering of a flux qubit. Phys. Rev. A 91, 013825 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the “316” Project Plan of Xuchang University and the Key Research Project in Universities of Henan Province (Grant No. 19A140016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Bo Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, RY., Yang, F., Zhang, N. et al. Accelerated and robust population transfer in a transmon qutrit via \(\Delta \)-type driving. Quantum Inf Process 17, 237 (2018). https://doi.org/10.1007/s11128-018-2006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2006-7

Keywords

Navigation