Abstract
We propose an exact mathematical mapping that can be useful for making an analog quantum simulator that uses ion-based systems to realize the many-body electron–electron Coulomb interaction of an electron gas. This exact mathematical mapping allows us to deal with a system that is difficult to solve and control using a potentially more experimentally feasible setup. We show that ions can efficiently simulate electronic Coulomb interactions by using a unitary dilatation transform. The transformation does not need to be physically implemented if only the energy spectrum is desired, eliminating the complexity overhead. This proposal works in any number of dimensions and could be used to simulate different topological phases of electrons in graphene-like structures, by using ions confined in honeycomb lattices.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)
Wu, F., Sodemann, I., Araki, Y., MacDonald, A.H., Jolicoeur, T.: So(5) symmetry in the quantum hall effect in graphene. Phys. Rev. B 90, 235432 (2014)
Stormer, H.L.: Nobel lecture: the fractional quantum hall effect. Rev. Mod. Phys. 71, 875–889 (1999)
Rietschel, H., Sham, L.J.: Role of electron coulomb interaction in superconductivity. Phys. Rev. B 28, 5100–5108 (1983)
Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014)
Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8(4), 264–266 (2012)
Schindler, P., Nigg, D., Monz, T., Barreiro, J.T., Martinez, E., Wang, S.X., Quint, S., Brandl, M.F., Nebendahl, V., Roos, C.F., Chwalla, M., Hennrich, M., Blatt, R.: A quantum information processor with trapped ions. New J. Phys. 15(12), 123012 (2013)
Blatt, R., Roos, C.F.: Quantum simulations with trapped ions. Nat. Phys. 8(4), 277–284 (2012)
Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)
Polini, M., Guinea, F., Lewenstein, M., Manoharan, H.C., Pellegrini, V.: Artificial honeycomb lattices for electrons, atoms and photons. Nat. Nano 8(9), 625–633 (2013)
Bohm, D., Pines, D.: A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609–625 (1953)
Wybourne, B.G.: Classical Groups for Physicists. Wiley, Hoboken (1974)
Wu, L.-A., Byrd, M.S., Lidar, D.A.: Polynomial-time simulation of pairing models on a quantum computer. Phys. Rev. Lett. 89, 057904 (2002)
Benassi, A., Vanossi, A., Tosatti, E.: Nanofriction in cold ion traps. Nat. Commun. 2, 236 (2011)
Wang, P.-J., Li, T., Noel, C., Chuang, A., Zhang, X., Häffner, H.: Surface traps for freely rotating ion ring crystals. J. Phys. B Atom. Mol. Opt. Phys. 48(20), 205002 (2015)
Lee, K.L., Grémaud, B., Han, R., Englert, B.-G., Miniatura, C.: Ultracold fermions in a graphene-type optical lattice. Phys. Rev. A 80, 043411 (2009)
Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G., Esslinger, T.: Creating, moving and merging dirac points with a fermi gas in a tunable honeycomb lattice. Nature 483(7389), 302–305 (2012)
Acknowledgements
This work is supported by the Basque Government (Grant No. IT472-10), the Spanish MICINN (Project No. FIS2012-36673-C03-03), and the Basque Country University UFI (Project No. 11/55-01-2013). Partial support was provided by LightCone Interactive LLC.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Luo, DW., Pyshkin, P.V., Modugno, M. et al. Ion-based quantum simulation of many-body electron–electron Coulomb interaction. Quantum Inf Process 17, 238 (2018). https://doi.org/10.1007/s11128-018-2008-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2008-5