Skip to main content
Log in

Ion-based quantum simulation of many-body electron–electron Coulomb interaction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an exact mathematical mapping that can be useful for making an analog quantum simulator that uses ion-based systems to realize the many-body electron–electron Coulomb interaction of an electron gas. This exact mathematical mapping allows us to deal with a system that is difficult to solve and control using a potentially more experimentally feasible setup. We show that ions can efficiently simulate electronic Coulomb interactions by using a unitary dilatation transform. The transformation does not need to be physically implemented if only the energy spectrum is desired, eliminating the complexity overhead. This proposal works in any number of dimensions and could be used to simulate different topological phases of electrons in graphene-like structures, by using ions confined in honeycomb lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Wu, F., Sodemann, I., Araki, Y., MacDonald, A.H., Jolicoeur, T.: So(5) symmetry in the quantum hall effect in graphene. Phys. Rev. B 90, 235432 (2014)

    Article  ADS  Google Scholar 

  3. Stormer, H.L.: Nobel lecture: the fractional quantum hall effect. Rev. Mod. Phys. 71, 875–889 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Rietschel, H., Sham, L.J.: Role of electron coulomb interaction in superconductivity. Phys. Rev. B 28, 5100–5108 (1983)

    Article  ADS  Google Scholar 

  5. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014)

    Article  ADS  Google Scholar 

  6. Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8(4), 264–266 (2012)

    Article  Google Scholar 

  7. Schindler, P., Nigg, D., Monz, T., Barreiro, J.T., Martinez, E., Wang, S.X., Quint, S., Brandl, M.F., Nebendahl, V., Roos, C.F., Chwalla, M., Hennrich, M., Blatt, R.: A quantum information processor with trapped ions. New J. Phys. 15(12), 123012 (2013)

    Article  ADS  Google Scholar 

  8. Blatt, R., Roos, C.F.: Quantum simulations with trapped ions. Nat. Phys. 8(4), 277–284 (2012)

    Article  Google Scholar 

  9. Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Polini, M., Guinea, F., Lewenstein, M., Manoharan, H.C., Pellegrini, V.: Artificial honeycomb lattices for electrons, atoms and photons. Nat. Nano 8(9), 625–633 (2013)

    Article  Google Scholar 

  11. Bohm, D., Pines, D.: A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609–625 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Wybourne, B.G.: Classical Groups for Physicists. Wiley, Hoboken (1974)

    MATH  Google Scholar 

  13. Wu, L.-A., Byrd, M.S., Lidar, D.A.: Polynomial-time simulation of pairing models on a quantum computer. Phys. Rev. Lett. 89, 057904 (2002)

    Article  ADS  Google Scholar 

  14. Benassi, A., Vanossi, A., Tosatti, E.: Nanofriction in cold ion traps. Nat. Commun. 2, 236 (2011)

    Article  ADS  Google Scholar 

  15. Wang, P.-J., Li, T., Noel, C., Chuang, A., Zhang, X., Häffner, H.: Surface traps for freely rotating ion ring crystals. J. Phys. B Atom. Mol. Opt. Phys. 48(20), 205002 (2015)

    Article  ADS  Google Scholar 

  16. Lee, K.L., Grémaud, B., Han, R., Englert, B.-G., Miniatura, C.: Ultracold fermions in a graphene-type optical lattice. Phys. Rev. A 80, 043411 (2009)

    Article  ADS  Google Scholar 

  17. Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G., Esslinger, T.: Creating, moving and merging dirac points with a fermi gas in a tunable honeycomb lattice. Nature 483(7389), 302–305 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Basque Government (Grant No. IT472-10), the Spanish MICINN (Project No. FIS2012-36673-C03-03), and the Basque Country University UFI (Project No. 11/55-01-2013). Partial support was provided by LightCone Interactive LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Ao Wu .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, DW., Pyshkin, P.V., Modugno, M. et al. Ion-based quantum simulation of many-body electron–electron Coulomb interaction. Quantum Inf Process 17, 238 (2018). https://doi.org/10.1007/s11128-018-2008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2008-5

Keywords

Navigation