Skip to main content
Log in

One-step implementation of a multi-target-qubit controlled phase gate in a multi-resonator circuit QED system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Circuit quantum electrodynamics system composed of many qubits and resonators may provide an excellent way to realize large-scale quantum information processing (QIP). Because of key role for large-scale QIP and quantum computation, multi-qubit gates have drawn intensive attention recently. Here, we present a one-step method to achieve a multi-target-qubit controlled phase gate in a multi-resonator system, which possesses a common control qubit and multiple different target qubits distributed in their respective resonators. Noteworthily, the implementation of this multi-qubit phase gate does not require classical pulses, and the gate operation time is independent of the number of qubits. Besides, the proposed scheme can in principle be adapted to a general type of qubits like natural atoms, quantum dots, and solid-state qubits (e.g., superconducting qubits and NV centers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031–1042 (2008)

    Article  ADS  Google Scholar 

  2. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)

    Article  ADS  Google Scholar 

  3. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  4. Yang, C.P., Chu, S.I., Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)

    Article  ADS  Google Scholar 

  5. You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)

    Article  ADS  Google Scholar 

  6. Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  7. Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)

    Article  ADS  Google Scholar 

  8. Chow, J.M., Gambetta, J.M., Córcoles, A.D., Merkel, S.T., Smolin, J.A., Rigetti, C., Poletto, S., Keefe, G.A., Rothwell, M.B., Rozen, J.R., Ketchen, M.B., Steffen, M.: Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Phys. Rev. Lett. 109, 060501 (2012)

    Article  ADS  Google Scholar 

  9. Chang, J.B., Vissers, M.R., Corcoles, A.D., Sandberg, M., Gao, J., Abraham, D.W., Chow, J.M., Gambetta, J.M., Rothwell, M.B., Keefe, G.A., Steffen, M., Pappas, D.P.: Improved superconducting qubit coherence using titanium nitride. Appl. Phys. Lett. 103, 012602 (2013)

    Article  ADS  Google Scholar 

  10. Barends, R., Kelly, J., Megrant, A., Sank, D., Jeffrey, E., Chen, Y., Yin, Y., Chiaro, B., Mutus, J.Y., Neill, C., O’Malley, P.J.J., Roushan, P., Wenner, J., White, T.C., Cleland, A.N., Martinis, J.M.: Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013)

    Article  ADS  Google Scholar 

  11. Chow, J.M., Gambetta, J.M., Magesan, E., Abraham, D.W., Cross, A.W., Johnson, B.R., Masluk, N.A., Ryan, C.A., Smolin, J.A., Srinivasan, S.J., Steffen, M.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nature Commun. 5, 4015 (2014)

    Article  ADS  Google Scholar 

  12. Chen, Y., Neill, C., Roushan, P., Leung, N., Fang, M., Barends, R., Kelly, J., Campbell, B., Chen, Z., Chiaro, B., Dunsworth, A., Jeffrey, E., Megrant, A., Mutus, J.Y., O’Malley, P.J.J., Quintana, C.M., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Geller, M.R., Cleland, A.N., Martinis, J.M.: Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014)

    Article  ADS  Google Scholar 

  13. Stern, M., Catelani, G., Kubo, Y., Grezes, C., Bienfait, A., Vion, D., Esteve, D., Bertet, P.: Flux qubits with long coherence times for hybrid quantum circuits. Phys. Rev. Lett. 113, 123601 (2014)

    Article  ADS  Google Scholar 

  14. Peterer, M.J., Bader, S.J., Jin, X., Yan, F., Kamal, A., Gudmundsen, T.J., Leek, P.J., Orlando, T.P., Oliver, W.D., Gustavsson, S.: Coherence and decay of higher energy levels of a superconducting transmon qubit. Phys. Rev. Lett. 114, 010501 (2015)

    Article  ADS  Google Scholar 

  15. Pop, I.M., Geerlings, K., Catelani, G., Schoelkopf, R.J., Glazman, L.I., Devore, M.H.: Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles. Nature 508, 369–372 (2014)

    Article  ADS  Google Scholar 

  16. You, J.Q., Hu, X.D., Ashhab, S., Nori, F.: Low-decoherence flux qubit. Phys. Rev. B 75, 140515 (2007)

    Article  ADS  Google Scholar 

  17. Steffen, M., Kumar, S., DiVincenzo, D.P., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B.: High-coherence hybrid superconducting qubit. Phys. Rev. Lett. 105, 100502 (2010)

    Article  ADS  Google Scholar 

  18. Yan, F., Gustavsson, S., Kamal, A., Birenbaum, J., Sears, A.P., Hover, D., Gudmundsen, T.J., Rosenberg, D., Samach, G., Weber, S., Yoder, J.L., Orlando, T.P., Clarke, J., Kerman, A.J., Oliver, W.D.: The flux qubit revisited to enhance coherence and reproducibility. Nature Commun. 7, 12964 (2016)

    Article  ADS  Google Scholar 

  19. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)

    Article  ADS  Google Scholar 

  20. Chiorescu, I., Bertet, P., Semba, K., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–162 (2004)

    Article  ADS  Google Scholar 

  21. Forn-Díaz, P., Lisenfeld, J., Marcos, D., Garc ía-Ripoll, J.J., Solano, E., Harmans, C.J.P.M., Mooij, J.E.: Observation of the Bloch–Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010)

    Article  ADS  Google Scholar 

  22. Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M.J., Garcia-Ripoll, J.J., Zueco, D., Hümmer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010)

    Article  Google Scholar 

  23. Baust, A., Hoffmann, E., Haeberlein, M., Schwarz, M.J., Eder, P., Goetz, J., Wulschner, F., Xie, E., Zhong, L., Quijandŕa, F., Zueco, D., García Ripoll, J.J., García-Alvarez, L., Romero, G., Solano, E., Fedorov, K.G., Menzel, E.P., Deppe, F., Marx, A., Gross, R.: Ultrastrong coupling in two-resonator circuit QED. Phys. Rev. B 93, 214501 (2016)

    Article  ADS  Google Scholar 

  24. Yoshihara, F., Fuse, T., Ashhab, S., Kakuyanagi, K., Saito, S., Semba, K.: Superconducting qubitoscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13, 44–47 (2017)

    Article  Google Scholar 

  25. Mariantoni, M., Deppe, F., Marx, A., Gross, R., Wilhelm, F.K., Solano, E.: Two-resonator circuit quantum electrodynamics: a superconducting quantum switch. Phys. Rev. B 78, 104508 (2008)

    Article  ADS  Google Scholar 

  26. Strauch, F.W., Jacobs, K., Simmonds, R.W.: Arbitrary control of entanglement between two superconducting resonators. Phys. Rev. Lett. 105, 050501 (2010)

    Article  ADS  Google Scholar 

  27. Merkel, S.T., Wilhelm, F.K.: Generation and detection of NOON states in superconducting circuits. New J. Phys. 12, 093036 (2010)

    Article  ADS  Google Scholar 

  28. Hu, Y., Tian, L.: Deterministic generation of entangled photons in superconducting resonator arrays. Phys. Rev. Lett. 106, 257002 (2011)

    Article  ADS  Google Scholar 

  29. Strauch, F.W.: Quantum logic gates for superconducting resonator qudits. Phys. Rev. A 84, 052313 (2011)

    Article  ADS  Google Scholar 

  30. Strauch, F.W., Onyango, D., Jacobs, K., Simmonds, R.W.: Entangled-state synthesis for superconducting resonators. Phys. Rev. A 85, 022335 (2012)

    Article  ADS  Google Scholar 

  31. Peng, Z.H., Liu, Y.X., Nakamura, Y., Tsai, J.S.: Fast generation of multiparticle entangled state for flux qubits in a circle array of transmission line resonators with tunable coupling. Phys. Rev. B 85, 024537 (2012)

    Article  ADS  Google Scholar 

  32. Felicetti, S., Sanz, M., Lamata, L., Romero, G., Johansson, G., Delsing, P., Solano, E.: Dynamical Casimir effect entangles artificial atoms. Phys. Rev. Lett. 113, 093602 (2014)

    Article  ADS  Google Scholar 

  33. Aron, C., Kulkarni, M., Türeci, H.E.: Steady-state entanglement of spatially separated qubits via quantum bath engineering. Phys. Rev. A 90, 062305 (2014)

    Article  ADS  Google Scholar 

  34. Hua, M., Tao, M.J., Deng, F.G.: Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics. Phys. Rev. A 90, 012328 (2014)

    Article  ADS  Google Scholar 

  35. Sharma, R., Strauch, F.W.: Quantum state synthesis of superconducting resonators. Phys. Rev. A 93, 012342 (2016)

    Article  ADS  Google Scholar 

  36. Kyriienko, O., Søensen, A.S.: Continuous-wave single-photon transistor based on a superconducting circuit. Phys. Rev. Lett. 117, 140503 (2016)

    Article  ADS  Google Scholar 

  37. Zhao, Y.J., Wang, C.Q., Zhu, X.B., Liu, Y.X.: Engineering entangled microwave photon states through multiphoton interactions between two cavity fields and a superconducting qubit. Sci. Rep. 6, 23646 (2016)

    Article  ADS  Google Scholar 

  38. Li, Z., Ma, S.L., Yang, Z.P., Fang, A.P., Li, P.B., Gao, S.Y., Li, F.L.: Generation and replication of continuous-variable quadripartite cluster and Greenberger–Horne–Zeilinger states in four chains of superconducting transmission line resonators. Phys. Rev. A 93, 042305 (2016)

    Article  ADS  Google Scholar 

  39. Yang, C.P., Su, Q.P., Zheng, S.B., Nori, F.: Entangling superconducting qubits in a multi-cavity system. New J. Phys. 18, 013025 (2016)

    Article  ADS  Google Scholar 

  40. Li, W.L., Li, C., Song, H.S.: Realization of quantum information processing in quantum star network constituted by superconducting hybrid systems. Phys. A 463, 427–436 (2016)

    Article  MathSciNet  Google Scholar 

  41. Su, Q.P., Zhu, H.H., Yu, L., Zhang, Y., Xiong, S.J., Liu, J.M., Yang, C.P.: Generating double NOON states of photons in circuit QED. Phys. Rev. A 95, 022339 (2017)

    Article  ADS  Google Scholar 

  42. Liu, T., Zhang, Y., Yu, C.S., Zhang, W.N.: Deterministic transfer of an unknown qutrit state assisted by the low-Q microwave resonators. Phys. Lett. A 381, 1727–1731 (2017)

    Article  ADS  Google Scholar 

  43. Mariantoni, M., Wang, H., Yamamoto, T., Neeley, M., Bialczak, R.C., Chen, Y., Lenander, M., Lucero, E., O’connell, A.D., Sank, D., Weides, M., Wenner, J., Yin, Y., Zhao, J., Korotkov, A.N., Cleland, A.N., Martinis, J.M.: Implementing the quantum von Neumann architecture with superconducting circuits. Science 334, 61–65 (2011)

    Article  ADS  Google Scholar 

  44. Wang, H., Mariantoni, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J.M., Cleland, A.N.: Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011)

    Article  ADS  Google Scholar 

  45. Steffen, L., Salathe, Y., Oppliger, M., Kurpiers, P., Baur, M., Lang, C., Eichler, C., Puebla-Hellmann, G., Fedorov, A., Wallraff, A.: Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500, 319–322 (2013)

    Article  ADS  Google Scholar 

  46. Wang, C., Gao, Y.Y., Reinhold, P., Heeres, R.W., Ofek, N., Chou, K., Axline, C., Reagor, M., Blumoff, J., Sliwa, K.M., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: A Schrdinger cat living in two boxes. Science 352, 1087–1091 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Ofek, N., Petrenko, A., Heeres, R., Reinhold, P., Leghtas, Z., Vlastakis, B., Liu, Y., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016)

    Article  ADS  Google Scholar 

  48. Kakuyanagi, K., Matsuzaki, Y., Déprez, C., Toida, H., Semba, K., Yamaguchi, H., Munro, W.J., Saito, S.: Observation of collective coupling between an engineered ensemble of macroscopic artificial atoms and a superconducting resonator. Phys. Rev. Lett. 117, 210503 (2016)

    Article  ADS  Google Scholar 

  49. Paik, H., Mezzacapo, A., Sandberg, M., McClure, D.T., Abdo, B., Córcoles, A.D., Dial, O., Bogorin, D.F., Plourde, B.L.T., Steffen, M., Cross, A.W., Gambetta, J.M., Chow, J.M.: Experimental demonstration of a resonator-induced phase gate in a multiqubit circuit-qed system. Phys. Rev. Lett. 117, 250502 (2016)

    Article  ADS  Google Scholar 

  50. Wang, X., Sørensen, A., Mølmeret, K.: Multibit gates for quantum computing. Phys. Rev. Lett. 86, 3907 (2001)

    Article  ADS  Google Scholar 

  51. Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)

    Article  ADS  Google Scholar 

  52. Zou, X., Dong, Y., Guo, G.C.: Implementing a conditional \(z\) gate by a combination of resonant interaction and quantum interference. Phys. Rev. A 74, 032325 (2006)

    Article  ADS  Google Scholar 

  53. Xiao, Y.F., Zou, X.B., Guo, G.C.: One-step implementation of an \(N\)-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Phys. Rev. A 75, 054303 (2007)

    Article  ADS  Google Scholar 

  54. Monz, T., Kim, K., Hänsel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)

    Article  ADS  Google Scholar 

  55. Jones, C.: Composite Toffoli gate with two-round error detection. Phys. Rev. A 87, 052334 (2013)

    Article  ADS  Google Scholar 

  56. Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)

    Article  ADS  Google Scholar 

  57. Yang, C.P., Liu, Y.X., Nori, F.: Phase gate of one qubit simultaneously controlling \(n\) qubits in a cavity. Phys. Rev. A 81, 062323 (2010)

    Article  ADS  Google Scholar 

  58. Yang, C.P., Su, Q.P., Zhang, F.Y., Zheng, S.B.: Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses. Opt. Lett. 39, 3312–3315 (2014)

    Article  ADS  Google Scholar 

  59. Wang, H.F., Zhu, A.D., Zhang, S.: One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities. Opt. Lett. 39, 1489–1492 (2014)

    Article  ADS  Google Scholar 

  60. Liu, T., Cao, X.Z., Su, Q.P., Xiong, S.J., Yang, C.-P.: Multi-target-qubit unconventional geometric phase gate in a multi-cavity system. Sci. Rep. 6, 21562 (2016)

    Article  ADS  Google Scholar 

  61. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  62. Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 93, 130502 (2004)

    Article  Google Scholar 

  63. Shor, P.W.: In: Goldwasser S. (ed.) Proceedings of the 35th annual symposium on foundations of computer science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)

  64. Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)

    Article  ADS  Google Scholar 

  65. Nilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  66. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  67. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Gaitan, F.: Quantum Error Correction and Fault Tolerant Quantum Computing. CRC Press, Boca Raton (2008)

    Book  MATH  Google Scholar 

  69. Beth, T., Rötteler, M.: Quantum Information, vol. 173, Ch. 4, p. 96. Springer, Berlin (2001)

  70. Šašura, M., Bužek, V.: Multiparticle entanglement with quantum logic networks: application to cold trapped ions. Phys. Rev. A 64, 012305 (2001)

    Article  Google Scholar 

  71. Braunstein, S.L., Bužek, V., Hillery, M.: Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit. Phys. Rev. A 63, 052313 (2001)

    Article  ADS  Google Scholar 

  72. Liu, Y.X., Sun, C.P., Nori, F.: Scalable superconducting qubit circuits using dressed states. Phys. Rev. A 74, 052321 (2006)

    Article  ADS  Google Scholar 

  73. Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Katz, N., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523–526 (2008)

    Article  Google Scholar 

  74. Leek, P.J., Filipp, S., Maurer, P., Baur, M., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Wallraff, A.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511 (2009)

    Article  ADS  Google Scholar 

  75. Strand, J.D., Ware, M., Beaudoin, F., Ohki, T.A., Johnson, B.R., Blais, A., Plourde, B.L.T.: First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505 (2013)

    Article  ADS  Google Scholar 

  76. Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)

    Article  ADS  Google Scholar 

  77. James, D.F., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85, 625–632 (2007)

    Article  ADS  Google Scholar 

  78. Sandberg, M., Wilson, C.M., Persson, F., Bauch, T., Johansson, G., Shumeiko, V., Duty, T., Delsing, P.: Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett. 92, 203501 (2008)

    Article  ADS  Google Scholar 

  79. Wang, Z.L., Zhong, Y.P., He, L.J., Wang, H., Martinis, J.M., Cleland, A.N., Xie, Q.W.: Quantum state characterization of a fast tunable superconducting resonator. Appl. Phys. Lett. 102, 163503 (2013)

    Article  ADS  Google Scholar 

  80. Chen, W., Bennett, D.A., Patel, V., Lukens, J.E.: Substrate and process dependent losses in superconducting thin film resonators. Supercond. Sci. Technol. 21, 075013 (2008)

    Article  ADS  Google Scholar 

  81. Leek, P.J., Baur, M., Fink, J.M., Bianchetti, R., Steffen, L., Filipp, S., Wallraff, A.: Cavity quantum electrodynamics with separate photon storage and qubit readout modes. Phys. Rev. Lett. 104, 100504 (2010)

    Article  ADS  Google Scholar 

  82. Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., O’Malley, P.J.J., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Yin, Y., Zhao, J., Palmstrøm, C.J., Martinis, J.M., Cleland, A.N.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, under Grant Nos. 11775040 and 11375036, the Xinghai Scholar Cultivation Plan, and the Fundamental Research Fund for the Central Universities under Grant No. DUT18LK45.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Shui Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Guo, BQ., Zhang, Y. et al. One-step implementation of a multi-target-qubit controlled phase gate in a multi-resonator circuit QED system. Quantum Inf Process 17, 240 (2018). https://doi.org/10.1007/s11128-018-2011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2011-x

Keywords

Navigation