Skip to main content
Log in

Monitoring the intercept-resend attack with the weak measurement model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Unconditional security of the quantum key distribution protocol has been proved, but the practical quantum key distribution system may be attacked by utilizing imperfect state preparation and measurement devices. To improve security of the practical quantum key distribution system, we propose the weak measurement model to monitor the intercept-resend eavesdropping strategy in the quantum channel, where the detector-blinding attack and the wavelength attack can be observed through the quantum bit error rate value in the weak measurement model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  2. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  4. Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(01), 1–127 (2008)

    Article  Google Scholar 

  5. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)

    Article  ADS  Google Scholar 

  6. Fuchs, C.A., Gisin, N., Griffiths, R.B., et al.: Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. Phys. Rev. A 56, 1163 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  7. Li, H.W., Wang, S., Huang, J.Z., et al.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84(6), 062308 (2011)

    Article  ADS  Google Scholar 

  8. Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 073 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, p686–689 (2010)

    Article  ADS  Google Scholar 

  10. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  11. Huttner, B., Imoto, N., Gisin, N.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863 (1995)

    Article  ADS  Google Scholar 

  12. Brassard, G., Brassard, G., Lutkenhaus, N., Mor, T., et al.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  Google Scholar 

  13. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    Article  ADS  Google Scholar 

  14. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)

    Article  ADS  Google Scholar 

  15. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  16. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  17. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  18. Hosten, O., Kwiat, P.: Observation of the spin Hall effect of light via weak measurements. Science 319, 787 (2008)

    Article  ADS  Google Scholar 

  19. Dixon, P.B., Starling, D.J., Jordan, A.N., et al.: Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102, 173601 (2009)

    Article  ADS  Google Scholar 

  20. Xu, X.Y., Kedem, Y., Sun, K., et al.: Phase estimation with weak measurement using a white light source. Phys. Rev. Lett. 111, 033604 (2013)

    Article  ADS  Google Scholar 

  21. Lundeen, J.S., Sutherland, B., Patel, A., et al.: Direct measurement of the quantum wavefunction. Nature 474, 188 (2011)

    Article  Google Scholar 

  22. Lundeen, J.S., Bamber, C.: Procedure for direct measurement of general quantum states using weak measurement. Phys. Rev. Lett. 108, 070402 (2012)

    Article  ADS  Google Scholar 

  23. Aharonov, Y., Botero, A., Popescu, S., et al.: Revisiting Hardy’s paradox: counterfactual statements, real measurements, entanglement and weak values. Phys. Lett. A 301, 130 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. Hu, M.J., Zhou, Z.Y., Hu X.M., et al.: Experimental Sharing of Nonlocality among Multiple Observers with One Entangled Pair via Optimal Weak Measurements. arXiv:1609.01863 (2016)

  25. Schiavon, M., Calderaro, L., Pittaluga, M.: Three-observer Bell inequality violation on a two-qubit entangled state. Quantum Sci. Technol. 2, 015010 (2017)

    Article  ADS  Google Scholar 

  26. Silva, R., Gisin, N., Guryanova, Y., et al.: Multiple observers can share the nonlocality of half of an entangled pair by using optimal weak measurements. Phys. Rev. Lett. 114, 250401 (2015)

    Article  ADS  Google Scholar 

  27. Li, H.W., Zhang, Y.S., An, X.B.: Three-observer classical dimension witness violation with weak measurement. Commun. Phys. 1(1), 10 (2018)

    Article  ADS  Google Scholar 

  28. An, X.B., Li, H.W., Yin, Z.Q., et al.: Experimental three-party quantum random number generator based on dimension witness violation and weak measurement. Opt. Lett. 43(14), 3437–3440 (2018)

    Article  ADS  Google Scholar 

  29. Troupe, J.E., Farinholt, J.M.: Quantum Cryptography with Weak Measurements. arXiv:1702.04836 (2017)

  30. Huttner, B., Ekert, A.K.: Information gain in quantum eavesdropping. J. Mod. Opt. 41, 2455 (1994)

    Article  ADS  Google Scholar 

  31. Lutkenhaus, N.: Security against eavesdropping in quantum cryptography. Phys. Rev. A 54, 97 (1996)

    Article  ADS  Google Scholar 

  32. Qian, Y.J., Li, H.W., He, D.Q.: Countermeasure against probabilistic blinding attack in practical quantum key distribution systems. Chin. Phys. B. 24(9), 090305 (2015)

    Article  ADS  Google Scholar 

  33. Li, H.W., Yin, Z.Q., Wang, S.: Randomness determines practical security of BB84 quantum key distribution. Sci. Rep. 5, 16200 (2015)

    Article  ADS  Google Scholar 

  34. Gottesman, D., Lo, H.K.: Proof of security of quantum key distribution with two-way classical communications. IEEE Trans. Inform. Theory 49(2), 832–838 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Xuebi An and Yongsheng Zhang for their helpful discussions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61675235, 11304397), National key research and development program of China (Grant No. 2016YFA0302600) and China Postdoctoral Science Foundation (Grant No. 2013M540514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HW., Xu, ZM. & Yin, ZQ. Monitoring the intercept-resend attack with the weak measurement model. Quantum Inf Process 17, 257 (2018). https://doi.org/10.1007/s11128-018-2013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2013-8

Keywords

Navigation