Abstract
Motivated by the teleportation of hyper-entangled states, a high capacity quantum weak blind signature (QWBS) scheme is developed via logistic chaotic maps. Three participants jointly accomplish the task in two degrees of freedom entangled system process. Alice blinds the two copies of each state via a chaotic quantum blinding algorithm, using the initial keys shared by Bob. Charlie and Alice provide private and public signatures, while Bob verifies the authenticity by comparing both the blinded and original messages. Unlike previous schemes, the proposed QWBS scheme is immune to internal counterfeiting attacks that can be applied after signing. Analysis shows that the scheme ensures a blind signature while maintaining sender traceability with the help of a trusted signatory in the three-sided cooperative mechanism. This QWBS protocol has the advantage of having a higher capacity than the protocols with a qubit system. It has a wide application for online electronic transaction systems.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Rivest, R.L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 26(2), 96–99 (1983)
Nist, C.: The Digital Signature Standard, pp. 36–40. ACM, New York (1992)
Meijer, H., Akl, S.: Digital signature schemes for computer communication networks. In: Symposium on Data Communications, pp. 37–41 (1981)
Chaum, D.: Blind Signatures for Untraceable Payments. Springer, Berlin (1983)
Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Quantum Entanglement and Quantum Information—Proceedings of Cast, pp. 303–332 (1999)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings ACM Symposium on the Theory of Computing, pp. 212–219 (1996)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)
Zhou, N., Wang, L., Gong, L., Zuo, X., Liu, Y.: Quantum deterministic key distribution protocols based on teleportation and entanglement swapping. Opt. Commun. 284(19), 4836–4842 (2011)
Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12(1), 365–380 (2013)
Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78(6), 5175–5179 (2008)
Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)
Wei, C.Y., Cai, X.Q., Liu, B., Wang, T., Gao, F.: A generic construction of quantum-oblivious-keytransfer-based private query with ideal data base security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2018)
Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum key distribution components. Phys. Rev. A 91, 042304 (2014)
Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)
Zhang, K.J., Qin, S.J., Sun, Y., Song, T.T., Su, Q.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(9), 3127–3141 (2013)
Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)
Wen, X., Niu, X., Ji, L., Tian, Y.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)
Naseri, M.: A weak blind signature based on quantum cryptography. Int. J. Phys. Sci. 21, 5051–5053 (2011)
Qi, S., Zheng, H., Wen, Q., Li, W.: Quantum blind signature based on two-state vector formalism. Opt. Commun. 283(21), 4408–4410 (2010)
Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phys. B 19(6), 60,307–060,307 (2010)
He, L.B., Huang, L.S., Wei, Y., Rui, X.: Cryptanalysis of fair quantum blind signatures. Chin. Phys. B 21(3), 63–66 (2012)
Yin, X., Ma, W., Liu, W.: A blind quantum signature scheme with chi-type entangled states. Int. J. Theor. Phys. 51(2), 455–461 (2012)
Zuo, H.: Cryptanalysis of quantum blind signature scheme. Int. J. Theor. Phys. 52(1), 322–329 (2013)
Cao, H.J., Yu, Y.F., Song, Q., Gao, L.X.: A quantum proxy weak blind signature scheme based on controlled quantum teleportation. Int. J. Theor. Phys. 54(4), 1325–1333 (2015)
Lou, X., Chen, Z., Guo, Y.: A weak quantum blind signature with entanglement permutation. Int. J. Theor. Phys. 54(9), 3283–3292 (2015)
Zhang, K.J., Jia, H.Y.: Cryptanalysis of a quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 54(2), 582–588 (2015)
Yan, L.L., Chang, Y., Zhang, S.B., Han, G.H., Sheng, Z.W.: A quantum multi-proxy weak blind signature scheme based on entanglement swapping. Int. J. Theor. Phys. 56(2), 634–642 (2017)
Zhang, M., Li, H.: Weak blind quantum signature protocol based on entanglement swapping. Photon. Res. 3(6), 324 (2015)
Zhang, M.H., Li, H.F.: Fault-tolerant quantum blind signature protocols against collective noise. Quantum Inf. Process. 15(10), 4283 (2016)
Law, J.: Quantum computation and quantum information. Math. Struct. Comput. Sci. 17(6), 1115–1115 (2012)
Baptista, M.S.: Cryptography with chaos. Phys. Lett. A 240, 50–54 (1998)
Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2011)
Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)
Andersson, E., Curty, M., Jex, I.: Experimentally realizable quantum comparison of coherent states and its applications. Phys. Rev. A 74(2), 343–346 (2006)
Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706 (1998)
Zhou, N.R., Song, H.C., Gong, L.H.: Continuous variable quantum secret sharing via quantum teleportation. Int. J. Theor. Phys. 52(11), 4174–4184 (2013)
Zuo, H., Zhang, K., Song, T.: Security analysis of quantum multi-signature protocol based on teleportation. Quantum Inf. Process. 12(7), 2343–2353 (2013)
Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)
Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing, vol. 59(3), pp. 1829–1834. arXiv:quant-ph/9806063 (1998)
Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)
Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)
Zeng, G., Lee, M., Guo, Y., He, G.: Continuous variable quantum signature algorithm. Int. J. Quantum Inf. 5(04), 553–573 (2008)
Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A 79(5), 1744–1747 (2009)
Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84(6), 14717–14719 (2011)
Acknowledgements
Project was supported by National Natural Science Foundation of China (61602172), Natural Science Foundation of Hunan Province (2017JJ3223), Science and Technology Project of Hunan Province Department of Education (16B179).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lou, X., Tang, W. & Chen, X. A high capacity quantum weak blind signature based on logistic chaotic maps. Quantum Inf Process 17, 251 (2018). https://doi.org/10.1007/s11128-018-2014-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2014-7