Skip to main content
Log in

A high capacity quantum weak blind signature based on logistic chaotic maps

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Motivated by the teleportation of hyper-entangled states, a high capacity quantum weak blind signature (QWBS) scheme is developed via logistic chaotic maps. Three participants jointly accomplish the task in two degrees of freedom entangled system process. Alice blinds the two copies of each state via a chaotic quantum blinding algorithm, using the initial keys shared by Bob. Charlie and Alice provide private and public signatures, while Bob verifies the authenticity by comparing both the blinded and original messages. Unlike previous schemes, the proposed QWBS scheme is immune to internal counterfeiting attacks that can be applied after signing. Analysis shows that the scheme ensures a blind signature while maintaining sender traceability with the help of a trusted signatory in the three-sided cooperative mechanism. This QWBS protocol has the advantage of having a higher capacity than the protocols with a qubit system. It has a wide application for online electronic transaction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rivest, R.L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 26(2), 96–99 (1983)

    Article  MathSciNet  Google Scholar 

  2. Nist, C.: The Digital Signature Standard, pp. 36–40. ACM, New York (1992)

    Google Scholar 

  3. Meijer, H., Akl, S.: Digital signature schemes for computer communication networks. In: Symposium on Data Communications, pp. 37–41 (1981)

  4. Chaum, D.: Blind Signatures for Untraceable Payments. Springer, Berlin (1983)

    Book  Google Scholar 

  5. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)

    Article  Google Scholar 

  6. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Quantum Entanglement and Quantum Information—Proceedings of Cast, pp. 303–332 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings ACM Symposium on the Theory of Computing, pp. 212–219 (1996)

  8. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zhou, N., Wang, L., Gong, L., Zuo, X., Liu, Y.: Quantum deterministic key distribution protocols based on teleportation and entanglement swapping. Opt. Commun. 284(19), 4836–4842 (2011)

    Article  ADS  Google Scholar 

  10. Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12(1), 365–380 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78(6), 5175–5179 (2008)

    Article  Google Scholar 

  12. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)

    Article  ADS  Google Scholar 

  13. Wei, C.Y., Cai, X.Q., Liu, B., Wang, T., Gao, F.: A generic construction of quantum-oblivious-keytransfer-based private query with ideal data base security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2018)

    Article  MathSciNet  Google Scholar 

  14. Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum key distribution components. Phys. Rev. A 91, 042304 (2014)

    Article  ADS  Google Scholar 

  15. Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)

    Article  ADS  Google Scholar 

  16. Zhang, K.J., Qin, S.J., Sun, Y., Song, T.T., Su, Q.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(9), 3127–3141 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Wen, X., Niu, X., Ji, L., Tian, Y.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)

    Article  ADS  Google Scholar 

  19. Naseri, M.: A weak blind signature based on quantum cryptography. Int. J. Phys. Sci. 21, 5051–5053 (2011)

    Google Scholar 

  20. Qi, S., Zheng, H., Wen, Q., Li, W.: Quantum blind signature based on two-state vector formalism. Opt. Commun. 283(21), 4408–4410 (2010)

    Article  ADS  Google Scholar 

  21. Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phys. B 19(6), 60,307–060,307 (2010)

    Article  Google Scholar 

  22. He, L.B., Huang, L.S., Wei, Y., Rui, X.: Cryptanalysis of fair quantum blind signatures. Chin. Phys. B 21(3), 63–66 (2012)

    Google Scholar 

  23. Yin, X., Ma, W., Liu, W.: A blind quantum signature scheme with chi-type entangled states. Int. J. Theor. Phys. 51(2), 455–461 (2012)

    Article  Google Scholar 

  24. Zuo, H.: Cryptanalysis of quantum blind signature scheme. Int. J. Theor. Phys. 52(1), 322–329 (2013)

    Article  MathSciNet  Google Scholar 

  25. Cao, H.J., Yu, Y.F., Song, Q., Gao, L.X.: A quantum proxy weak blind signature scheme based on controlled quantum teleportation. Int. J. Theor. Phys. 54(4), 1325–1333 (2015)

    Article  MathSciNet  Google Scholar 

  26. Lou, X., Chen, Z., Guo, Y.: A weak quantum blind signature with entanglement permutation. Int. J. Theor. Phys. 54(9), 3283–3292 (2015)

    Article  MathSciNet  Google Scholar 

  27. Zhang, K.J., Jia, H.Y.: Cryptanalysis of a quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 54(2), 582–588 (2015)

    Article  MathSciNet  Google Scholar 

  28. Yan, L.L., Chang, Y., Zhang, S.B., Han, G.H., Sheng, Z.W.: A quantum multi-proxy weak blind signature scheme based on entanglement swapping. Int. J. Theor. Phys. 56(2), 634–642 (2017)

    Article  Google Scholar 

  29. Zhang, M., Li, H.: Weak blind quantum signature protocol based on entanglement swapping. Photon. Res. 3(6), 324 (2015)

    Article  Google Scholar 

  30. Zhang, M.H., Li, H.F.: Fault-tolerant quantum blind signature protocols against collective noise. Quantum Inf. Process. 15(10), 4283 (2016)

    Article  ADS  Google Scholar 

  31. Law, J.: Quantum computation and quantum information. Math. Struct. Comput. Sci. 17(6), 1115–1115 (2012)

    MathSciNet  Google Scholar 

  32. Baptista, M.S.: Cryptography with chaos. Phys. Lett. A 240, 50–54 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  33. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2011)

    Article  ADS  Google Scholar 

  34. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  35. Andersson, E., Curty, M., Jex, I.: Experimentally realizable quantum comparison of coherent states and its applications. Phys. Rev. A 74(2), 343–346 (2006)

    Article  Google Scholar 

  36. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706 (1998)

    Article  ADS  Google Scholar 

  37. Zhou, N.R., Song, H.C., Gong, L.H.: Continuous variable quantum secret sharing via quantum teleportation. Int. J. Theor. Phys. 52(11), 4174–4184 (2013)

    Article  MathSciNet  Google Scholar 

  38. Zuo, H., Zhang, K., Song, T.: Security analysis of quantum multi-signature protocol based on teleportation. Quantum Inf. Process. 12(7), 2343–2353 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  39. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  ADS  Google Scholar 

  40. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing, vol. 59(3), pp. 1829–1834. arXiv:quant-ph/9806063 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  41. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  42. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  43. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  44. Zeng, G., Lee, M., Guo, Y., He, G.: Continuous variable quantum signature algorithm. Int. J. Quantum Inf. 5(04), 553–573 (2008)

    Article  Google Scholar 

  45. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A 79(5), 1744–1747 (2009)

    MathSciNet  Google Scholar 

  46. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84(6), 14717–14719 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Project was supported by National Natural Science Foundation of China (61602172), Natural Science Foundation of Hunan Province (2017JJ3223), Science and Technology Project of Hunan Province Department of Education (16B179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, X., Tang, W. & Chen, X. A high capacity quantum weak blind signature based on logistic chaotic maps. Quantum Inf Process 17, 251 (2018). https://doi.org/10.1007/s11128-018-2014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2014-7

Keywords

Navigation