Abstract
The obstacle restricting us to generalize the ideal quantum metrology scheme to practice is the decay of the precision of estimation induced by the environment. When the parameter to be estimated is the phase parameter of atomic state, the loss of precision is caused by the spontaneous emission of the atom, which is the result of the interaction between the atom and the background quantum fields. Since the probe qubit constructed by the ground state and excited state of single atom is sensitive to the environment, we have provided schemes to use two proper states of n proper arrangement atoms as the new stable qubit states instead of the usual ground and excited state of single atom, to reduce the decay rate of the precision of estimation through the multi-atom indirect correlations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)
Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)
Hübner, M.: Explicit computation of the Bures distance for density matrices. Phys. Lett. A 163, 239–242 (1992)
Hübner, M.: Computation of Uhlmann’s parallel transport for density matrices and the Bures metric on three-dimensional Hilbert space. Phys. Lett. A 179, 226–230 (1993)
Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)
Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996)
Yurke, B., McCall, S.L., Klauder, J.R.: SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986)
Dowling, J.P.: Correlated input-port, matter-wave interferometer: quantum-noise limits to the atom-laser gyroscope. Phys. Rev. A 57, 4736–4746 (1998)
Kok, P., Braunstein, S.L., Dowling, J.P.: Quantum lithography, entanglement and Heisenberg-limited parameter estimation. J. Opt. B Quantum Semiclass 6, S811–S815 (2004)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96(010401), 1–4 (2006)
Boixo, S., Flammia, S.T., Caves, C.M., Geremia, J.M.: Generalized limits for single-parameter quantum estimation. Phys. Rev. Lett. 98(090401), 1–4 (2007)
Roy, S.M., Braunstein, S.L.: Exponentially enhanced quantum metrology. Phys. Rev. Lett. 100(220501), 1–4 (2008)
Boixo, S., Datta, A., Davis, M.J., Flammia, S.T., Shaji, A., Caves, C.M.: Quantum metrology: dynamics versus entanglement. Phys. Rev. Lett. 101(040403), 1–4 (2008)
Hofmann, H.F.: All path-symmetric pure states achieve their maximal phase sensitivity in conventional two-path interferometry. Phys. Rev. A 79(033822), 1–4 (2009)
Estève, J., Gross, C., Weller, A., Giovanazzi, S., Oberthaler, M.K.: Squeezing and entanglement in a Bose–Einstein condensate. Nature (London) 455, 1216–1219 (2008)
Hyllus, P., Pezzé, L., Smerzi, A.: Entanglement and sensitivity in precision measurements with states of a fluctuating number of particles. Phys. Rev. Lett. 105(120501), 1–4 (2010)
Pezzé, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102(100401), 1–4 (2009)
Hyllus, L., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezzé, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85(022321), 1–10 (2012)
Toth, G.: Multipartite entanglement and high precision metrology. Phys. Rev. A 85(022322), 1–10 (2012)
Rosenkranz, M., Jaksch, D.: Parameter estimation with cluster states. Phys. Rev. A 79(022103), 1–10 (2009)
Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997)
Ulam-Orgikh, D., Kitagawa, M.: Spin squeezing and decoherence limit in Ramsey spectroscopy. Phys. Rev. A 64(052106), 1–6 (2001)
Sasaki, M., Ban, M., Barnett, S.M.: Optimal parameter estimation of a depolarizing channel. Phys. Rev. A 66(022308), 1–8 (2002)
Shaji, A., Caves, C.M.: Qubit metrology and decoherence. Phys. Rev. A 76(032111), 1–13 (2007)
Monras, A., Paris, M.G.A.: Optimal quantum estimation of loss in Bosonic channels. Phys. Rev. Lett. 98(160401), 1–4 (2007)
Demkowicz-Dobrzański, R., Kołodyński, J., Guta, M.: The elusive Heisenberg limit in quantum enhanced metrology. Nat. Commun. 3(1063), 1–8 (2012)
Demkowicz-Dobrzański, R., Dorner, U., Smith, B.J., Lundeen, J.S., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Quantum phase estimation with lossy interferometers. Phys. Rev. A 80(013825), 1–10 (2009)
Lee, T.-W., Huver, S.D., Lee, H., Kaplan, L., McCracken, S.B., Min, C., Uskov, D.B., Wildfeuer, C.F., Veronis, G., Dowling, J.P.: Optimization of quantum interferometric metrological sensors in the presence of photon loss. Phys. Rev. A 80(063803), 1–4 (2009)
Dorner, U., Demkowicz-Dobrzański, R., Smith, B.J., Lundeen, J.S., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Optimal quantum phase estimation. Phys. Rev. Lett. 102(040403), 1–4 (2009)
Watanabe, Y., Sagawa, T., Ueda, M.: Optimal measurement on noisy quantum systems. Phys. Rev. Lett. 104(020401), 1–4 (2010)
Knysh, S., Smelyanskiy, V.N., Durkin, G.A.: Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state. Phys. Rev. A 83(021804), 1–4 (2011)
Kołdyński, J., Demkowicz-Dobrzański, R.: Phase estimation without a priori phase knowledge in the presence of loss. Phys. Rev. A 82(053804), 1–6 (2010)
Kacprowicz, M., Demkowicz-Dobrzański, R., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Experimental quantum-enhanced estimation of a lossy phase shift. Nat. Photonics 4, 357–360 (2010)
Genoni, M.G.A., Olivares, S., Paris, M.G.: Optical phase estimation in the presence of phase diffusion. Phys. Rev. Lett. 106(153603), 1–4 (2011)
Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109(233601), 1–5 (2012)
Escher, B.M., de MatosFilho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406–411 (2011)
Ma, J., Huang, Y., Wang, X., Sun, C.: Quantum Fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels. Phys. Rev. A 84(022302), 1–7 (2011)
Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87(022337), 1–14 (2013)
Chaves, R., Brask, J.B., Markiewicz, M., Kołodyński, J., Acín, A.: Noisy metrology beyond the standard quantum limit. Phys. Rev. Lett. 111(120401), 1–5 (2013)
Tsang, M.: Quantum metrology with open dynamical systems. New J. Phys. 15(073005), 1–21 (2013)
Alipour, S., Mehboudi, M., Rezakhani, A.T.: Quantum metrology in open systems: dissipative Cramr–Rao bound. Phys. Rev. Lett. 112(120405), 1–5 (2014)
Benatti, F., Alipour, S., Rezakhani, A.T.: Dissipative quantum metrology in manybody systems of identical particles. New J. Phys. 16(015023), 1–13 (2014)
Ozaydin, F.: Phase damping destroys quantum Fisher information of W states. Phys. Lett. A 378, 3161–3164 (2014)
Wang, J., Tian, Z., Jing, J., Fan, H.: Quantum metrology and estimation of Unruh effect. Sci. Rep. 4(7195), 1–6 (2014)
Yao, Y., Xiao, X., Ge, L., Wang, X., Sun, C.: Quantum Fisher information in noninertial frames. Phys. Rev. A 89(042336), 1–7 (2014)
Ozaydin, F., Altintas, A.: Quantum metrology: surpassing the shot-noise limit with Dzyaloshinskii–Moriya interaction. Sci. Rep. 5(16360), 1–6 (2015)
Jin, Y., Yu, H.: Electromagnetic shielding in quantum metrology. Phys. Rev. A 91(022120), 1–7 (2015)
Jin, Y.: Precision protection through indirect correlations. Ann. Phys. (NY) 367, 212–218 (2016)
Audretsch, J., Müller, R.: Spontaneous excitation of an accelerated atom: the contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A 50, 1755–1763 (1994)
Jin, Y.: The effects of symmetrical arrangement on quantum metrology. Sci. Rep. 7(405), 1–7 (2017)
Zhu, Z., Yu, H., Wang, B.: Temperature-dependent Casimir–Polder forces on polarizable molecules. Phys. Rev. A 86(052508), 1–10 (2012)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grants No. 11605030, The science and technology top talent support program of Guizhou educational department under Grant No. QJHKY[2017]084 and the Scientific Research Foundation of Guiyang university under Grant No. 20160375115.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jin, Y. Precision protection through multi-body indirect correlations and the reconstruction of stable probe qubit system. Quantum Inf Process 17, 242 (2018). https://doi.org/10.1007/s11128-018-2015-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2015-6