Abstract
We analyse robustness of nonlocal correlation in multiqubit entangled states—three- and four-qubit GHZ class and three-qubit W class—useful for quantum information and computation, under noisy conditions and weak measurements. For this, we use a Bell-type inequality whose violation is considered as a signature for confirming the presence of genuine nonlocal correlations between the qubits. In order to demonstrate the effects of noise and weak measurements, an analytical relation is established between the maximum expectation value of three and four-qubit Svetlichny operators for the systems under study, noise parameter and strengths of weak measurements. Our results show that for a set of three- and four-qubit GHZ class states, maximal nonlocality does not coincide with maximum entanglement for a given noise parameter and a certain range of weak measurement parameter. Our analysis further shows an excellent agreement between the analytical and numerical results.















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Einstein, A.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)
Bohm, D., Aharanov, Y.: Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 108, 1070–1076 (1957)
Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)
Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201–202 (1991)
Peres, A.: Incompatible results of quantum measurements. Phys. Lett. A 151, 107–108 (1990)
Mermin, N.D.: What’s wrong with these elements of reality? Phys. Today 43, 9–11 (1990)
Home, D., Selleri, F.: Bells theorem and the EPR paradox. Riv. Nuovo Cimento 14, 1 (1991)
Batle, J., Plastino, A.R., Casas, M., Plastino, A.: Conditional q-entropies and quantum separability: a numerical exploration. J. Phys. A Math. Gen. 35, 10311 (2002)
Batle, J., Casas, M.: Nonlocality and entanglement in qubit systems. J. Phys. A Math. Gen. 44, 445304 (2011)
Ozdemir, S.K., Bartkiewicz, K., Liu, Y.X., Miranowicz, A.: Teleportation of qubit states through dissipative channels: conditions for surpassing the no-cloning limit. Phys. Rev. A 76, 042325 (2007)
Bartkiewicz, K., Lemr, K., Cernoch, A., Miranowicz, A.: Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography. Phys. Rev. A 95, 030102 (2017)
Khalfin, L., Tsirelson, B.: Quantum/classical correspondence in the light of Bell’s inequalities found. Physics 22, 879–948 (1992)
Mermin, N.D.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65, 803–815 (1993)
Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 222, 21–25 (1996)
Zeilinger, A.: Experiment and the foundations of quantum physics. Rev. Mod. Phys. 71, S288–S297 (1999)
Genovese, M.: Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319–396 (2005)
Brunner, N., et al.: Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)
Tittel, W., Brendel, J., Zbinden, H., Gisin, N.: Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998)
Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001)
Kwiat, P.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)
Kwiat, P.: Hyper-entangled states. J. Mod. Opt. 44, 2173–2184 (1997)
Babichev, S.A., Appel, J., Lvovsky, A.I.: Homodyne tomography characterization and nonlocality of a dual-mode optical qubit. Phys. Rev. Lett. 92, 193601 (2004)
Thew, R., Acn, A., Zbinden, H., Gisin, N.: Bell-type test of energy-time entangled qutrits. Phys. Rev. Lett. 93, 010503 (2004)
Bennett, C.H., Wiesner, S.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)
Bennett, C.H.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
Gisin, N., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)
Zukowski, M., Zeilinger, A., Horne, M.A., Eckert, A.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)
Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672–5675 (1998)
Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)
Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)
Dakic, B., et al.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066–3069 (1987)
Seevinck, M., Svetlichny, G.: Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)
Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)
Bancal, J.D., Gisin, N., Pironio, S.: Looking for symmetric Bell inequalities. J. Phys. A 43, 385303 (2010)
Barrett, J., Colbeck, R., Kent, A.: Memory attacks on device-independent quantum cryptography. Phys. Rev. Lett. 110, 010503 (2013)
Ghose, S., Debnath, S., Sinclair, N., Kabra, A., Stock, R.: Multiqubit nonlocality in families of 3-and 4-qubit entangled states. J. Phys. A Math. Theor. 43, 445301 (2010)
Pan, J.W., Bouwmeester, D., Daniell, M., Weinfurter, H., Zeilinger, A.: Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403, 515–519 (2000)
Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2004)
Zhao, Z., Yang, T., Chen, Y.-A., Zhang, A.-N., Zukowski, M., Pan, J.W.: Experimental violation of local realism by four-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 91, 180401 (2003)
Eibl, M., Gaertner, S., Bourennane, M., Kurtsiefer, C., Zukowski, M., Weinfurter, H.: Experimental observation of four-photon entanglement from parametric down-conversion. Phys. Rev. Lett. 90, 200403 (2003)
Walther, P., Aspelmeyer, M., Resch, K.J., Zeilinger, A.: Experimental violation of a cluster state Bell inequality. Phys. Rev. Lett. 95, 020403 (2005)
Lavoie, J., Kaltenbaek, R., Resch, K.: Experimental violation of Svetlichny’s inequality. New J. Phys. 11, 073051 (2009)
Zhao, J.Q., Cao, L.Z., Wang, X.Q., Lu, H.X.: Experimental investigation of tripartite entanglement and nonlocality in three-qubit generalized Greenberger–Horne–Zeilinger states. Phys. Lett. A 376, 2377–2380 (2012)
Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true \(n\)-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)
Cereceda, J.L.: Three-particle entanglement versus three-particle nonlocality. Phys. Rev. A 66, 024102 (2002)
Ghose, S., Sinclair, N., Debnath, S., Rungta, P., Stock, R.: Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger–Horne–Zeilinger-class states. Phys. Rev. Lett. 102, 250404 (2009)
Lu, H.X., Zhao, J.Q., Wang, X.Q., Cao, L.Z.: Experimental demonstration of tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger–Horne–Zeilinger-class states. Phys. Rev. A 84, 012111 (2011)
Zhang, C.: Experimental test of genuine multipartite nonlocality under the no-signalling principle. Sci. Rep. 6, 39327 (2016). https://doi.org/10.1038/srep39327
Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Mod. Phys. Rev. 75, 715–775 (2003)
Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)
Hein, M., Dr, W., Briegel, H.J.: Entanglement properties of multipartite entangled states under the influence of decoherence. Phys. Rev. A 71, 032350 (2005)
Mintert, F., Ku, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005)
Bandyopadhyay, S., Lidar, D.A.: Robustness of multiqubit entanglement in the independent decoherence model. Phys. Rev. A 72, 042339 (2005)
Almeida, M.P., et al.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)
Frowis, F., Dr, W.: Stable macroscopic quantum superpositions. Phys. Rev. Lett. 106, 110402 (2011)
Mahdiana, M., Yousefjani, R., Salimi, S.: Quantum discord evolution of three-qubit states under noisy channels. Eur. Phys. J. D 66, 133 (2012)
Ramzan, M.: Decoherence dynamics of discord for multipartite quantum systems. Eur. Phys. J. D 67, 170 (2013)
Tchoffo, M.: Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise. Eur. Phys. J. Plus 131, 380 (2016)
Acin, A., Durt, T., Gisin, N., Latorre, J.I.: Quantum nonlocality in two three-level systems. Phys. Rev. A 65, 052325 (2002)
Methot, A.A., Scarani, V.: An anomaly of non-locality. Quantum Inf. Comput. 7, 157–170 (2007)
Fonseca, E.A., Parisio, F.: Measure of nonlocality which is maximal for maximally entangled qutrits. Phys. Rev. A 92, 030101 (2015)
Lee, S.W., Jaksch, D.: Maximal violation of tight Bell inequalities for maximal high-dimensional entanglement. Phys. Rev. A 80, 010103(R) (2009)
Gunge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Commun. Math. Phys. 306, 695 (2011)
Hiesmayr, B.C.: Nonlocality and entanglement in a strange system. Eur. Phys. J. C 50, 73–79 (2007)
Vidick, T., Wehner, S.: More nonlocality with less entanglement. Phys. Rev. A 83, 052310 (2011)
Ji, S.W., Lee, J., Lim, J., Nagata, K., Lee, H.W.: Multisetting Bell inequality for qudits. Phys. Rev. A 78, 052103 (2008)
Brunner, N.: New perspectives on quantum correlations. Phys. E 42, 354–358 (2010)
de Rosier, A., Gruca, J., Parisio, F., Vrtesi, T., Laskowski, W.: Multipartite nonlocality and random measurements. Phys. Rev. A 96, 012101 (2017)
Chaves, R., Acn, A., Aolita, L., Cavalcanti, D.: Detecting nonlocality of noisy multipartite states with the Clauser–Horne–Shimony–Holt inequality. Phys. Rev. A 89, 042106 (2014)
Laskowski, W., Vertesi, T., Wiesniak, M.: Highly noise resistant multiqubit quantum correlations. J. Phys. A 48, 465301 (2015)
Sohbi, A., Zaquine, I., Diamanti, E., Markham, D.: Decoherence effects on the nonlocality of symmetric states. Phys. Rev. A 91, 022101 (2015)
Divianszky, P., Trencsenyi, R., Bene, E., Vertesi, T.: Bounding the persistency of the nonlocality of W states. Phys. Rev. A 93, 042113 (2016)
Bennett, C.H., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)
Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)
Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003)
Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)
Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)
Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)
Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)
Facchi, P., Lidar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)
Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)
Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103 (2010)
Lee, J.C., et al.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309–16316 (2011)
Kim, Y.S.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)
Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)
Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)
Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)
Cheong, Y.W., Lee, S.W.: Balance between information gain and reversibility in weak measurement. Phys. Rev. Lett. 109, 150402 (2012)
Sun, Q., Al-Amri, M., Suhail Zubairy, M.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)
Paraoanu, G.S.: Interaction-free measurements with superconducting qubits. Phys. Rev. Lett. 97, 180406 (2006)
Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A 78, 060302(R) (2008)
Barreiro, J.T., et al.: Experimental multiparticle entanglement dynamics induced by decoherence. Nat. Phys. 6, 943–946 (2010)
Lo Franco, R., Bellomo, B., Andersson, E., Compagno, G.: Revival of quantum correlations without system-environment back-action. Phys. Rev. A 85, 032318 (2012)
Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)
Sun, Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)
Paraoanu, G.S.: Extraction of information from a single quantum. Phys. Rev. A 83, 044101 (2011)
Singh, P., Kumar, A.: Correlations, nonlocality and usefulness of an efficient class of two-qubit mixed entangled states. Z. Naturforsch. A 73, 191–206 (2018)
Xu, X.Y., et al.: Phase estimation with weak measurement using a white light source. Phys. Rev. Lett. 111, 033604 (2013)
Katz, N., et al.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498–1500 (2006)
Groen, J.P., et al.: Partial-measurement backaction and nonclassical weak values in a superconducting circuit. Phys. Rev. Lett. 111, 090506 (2013)
Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)
Agarwal, P., Pati, A.K.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)
Adhikari, S., Gangopadhyay, S.: A study of the efficiency of the class of W-states as a quantum channel. IJTP 48, 403–408 (2009)
Singh, P., Adhikari, S., Kumar, A.: Usefulness of multiqubit W-type states in quantum information processing. JTEP 123, 572–581 (2016)
Laflamme, R., Knill, E., Zurek, W., Catasti, P., Mariappan, S.V.S.: NMR Greenberger–Horne–Zeilinger states. Philos. Trans. R. Soc. A 356, 1941–1948 (1998)
Bouwmeester, D., Pan, J.W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999)
Pan, J.W., Daniell, M., Gasparoni, S., Weihs, G., Zeilinger, A.: Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001)
Dogra, S., Dorai, K.: Arvind: experimental construction of generic three-qubit states and their reconstruction from two-party reduced states on an NMR quantum information processor. Phys. Rev. A 91, 022312 (2015)
Dong, L., et al.: Nearly deterministic preparation of the perfect W state with weak cross-Kerr nonlinearities. Phys. Rev. A 93, 012308 (2016)
Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)
Emary, C., Beenakker, C.W.J.: Relation between entanglement measures and Bell inequalities for three qubits. Phys. Rev. A 69, 032317 (2004)
Carteret, H.A., Sudbery, A.: Local symmetry properties of pure three-qubit states. J. Phys. A 33, 4981 (2000)
Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)
Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003)
Browne, D.E., Rudolf, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)
Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)
Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)
Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)
Shi, B.S., Tomita, A.: Teleportation of an unknown state by W state. Phys. Lett. A 296, 161–164 (2002)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990)
Ajoy, A., Rungta, P.: Svetlichnys inequality and genuine tripartite nonlocality in three-qubit pure states. Phys. Rev. A 81, 052334 (2010)
Acknowledgements
The authors thank MHRD and IIT Jodhpur for providing the research facility.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
1.1 Maximization of the expectation value of the three-qubit Svetlichny operator for W states
For maximizing the value of Svetlichny operator in Eq. (34) described in Sec. V, we assume \(\phi _{i}=0\) [128], and then add the first four terms in Eq. (8) to get
The expression for \(M'\) can be written in a similar fashion. For simplicity and mathematical convenience, let us define \(\Sigma =\left( \theta '_{a}+\theta '_{b}+\theta '_{c}\right) \) , \(\Sigma _{k}=\Sigma -2\theta '_{k}\), \(\tilde{\theta _{k}}=(\theta _{k}+\theta _{k'})/2\), and \(\theta '_{k}=(\theta _{k'}-\theta _{k})/2\) where \(k\epsilon \left\{ a,b,c\right\} \) such that
where
and the equality in Eq. (A.2) can be achieved by considering \(\tilde{\theta }_{a}=\tilde{\theta }_{b}=\tilde{\theta }_{c}=\pi /2\).
1.2 Derivation for the relationship between \(t_{1}\) and \(t_{2}\)
For evaluating the relationship between \(t_{1}\) and \(t_{2}\), we further consider two unit vectors p and \(p'\) where \(\vec {b}+\vec {b'}=2\vec {p}\cos \theta _{1}\) and \(\vec {b}-\vec {b'}=2\vec {p'}\sin \theta _{1}\) such that
Therefore, \(t_{1}\) and \(t_{2}\) can be re-expressed as
and
where
The other coefficients \(l_{apcd'}\), \(s_{apcd'}\) etc. can be defined in a similar fashion with prime on different angles. In order to simplify and optimize the expressions further, we assume \(\theta _{c}=\theta _{c'}\), and define two unit vectors q and \(q'\) such that \(\vec {d}+\vec {d'}=2\vec {q}\cos \theta _{2}\) and \(\vec {d}-\vec {d'}=2\vec {q'}\sin \theta _{2}\), i.e.,
This allows us to re-express Eqs. (B.2) and (B.3) as
and
where
From Eqs. (B.7) and (B.8), one can get
Using these inequalities, the iterative maximization of Eq. (39) can be summarized below as
where Eq. (B.13) is maximized with respect to \(\theta _{2}\), and the first and second terms in Eq. (B.14) are maximized separately with respect to \(\theta _{1}\). To simplify and optimize Eq. (B.15), we use Eqs. (B.9) and (B.10), such that
Equation (B.16) when maximized with respect to \(\theta _{a}\), where we have used the inequality (15), gives
Similarly, the other terms in Eq. (B-15) can be evaluated as
where, for optimization, we consider \(\cos ^{2}\phi _{apcq}=\cos ^{2}\phi _{ap'cq'}=\cos ^{2}\phi _{a'p'cq}=\cos ^{2}\phi _{a'pcq'}=1\). Therefore, using Eqs. (B.17–B.20), Eq. (B.15) can be re-expressed as
Considering the orthogonality of unit vectors \(\vec {p}\) and \(\vec {p'}\), the maximum value of \((\sin ^{2}\theta _{p}+\sin ^{2}\theta _{p'})\) is 2 and maximum value of \((\cos ^{2}\theta _{p}+\cos ^{2}\theta _{p'})\) is 1, i.e.,
Similarly from the orthogonality of unit vectors \(\vec {q}\) and \(\vec {q'}\), Eq. (B.22) can be further optimized as
A further maximization on the parameter \(\kappa \) gives
Therefore, the relationship between \(t_{1}\) and \(t_{2}\) can be defined as
Rights and permissions
About this article
Cite this article
Singh, P., Kumar, A. Analysing nonlocality robustness in multiqubit systems under noisy conditions and weak measurements. Quantum Inf Process 17, 249 (2018). https://doi.org/10.1007/s11128-018-2016-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2016-5