Skip to main content
Log in

Tunable multi-party high-capacity quantum key distribution based on m-generalized Fibonacci sequences using golden coding

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Practical communication settings for quantum key distribution (QKD) are very complex, and the number of participants should be tunable. Given these, we propose a tunable multi-party high-capacity QKD protocol based on m-generalized Fibonacci sequences and golden coding, where the number of participants can be adjusted adaptively by joining a new participant and revoking an old participant, combining two participant groups into one group. Meanwhile, we construct golden coding to achieve higher capability and fewer interactive communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goldenberg, L., Vaidman, L.: Counterfactual quantum key distribution without polarization encoding. Phys. Rev. Lett. 75, 1239–41 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A. 65, 032302–032305 (2002)

    Article  ADS  Google Scholar 

  4. Panduranga Rao, M.V., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. A. 87, 012331 (2013)

    Article  ADS  Google Scholar 

  5. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A. 78, 022321 (2008)

    Article  ADS  Google Scholar 

  6. Tanaka, A., Maeda, W., Takahashi, S., Tajima, A., Tomita, A.: Ensuring quality of shared keys through quantum key distribution for practical application. IEEE J. Sel. Top. Quantum Electron. 15, 1622–1629 (2009)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India) (New York: IEEE), pp. 175–179 (1984)

  8. Simon, D.S., Lawrence, N., Trevino, J., DalNegro, L., Sergienko, A.V.: High-capacity quantum Fibonacci coding for key distribution. Phys. Rev. A. 87, 032312 (2013)

    Article  ADS  Google Scholar 

  9. Barreiro, J.T., Kwiat, P.G.: Hyperentanglement for advanced quantum communication. In: Proceedings- SPIE The International Society For Optical Engineering; 7092P (2008); 6th Quantum Communications and Quantum Imaging Conference

  10. Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)

    Article  ADS  Google Scholar 

  11. Boyd, R.W., et al.: Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon. In: Proceedings of SPIE 7948, Advances in Photonics of Quantum Computing, Memory, and Communication IV, 79480L (February 11, 2011). https://doi.org/10.1117/12.873491.

  12. Lai, H., Luo, M.X., Zhan, C., Pieprzyk, J., Orgun, M.A.: An improved coding method of quantum key distribution protocols based on Fibonacci-valued OAM entangled states. Phys. Lett. A. 381, 2922–2926 (2017)

    Article  ADS  Google Scholar 

  13. Simon, D.S., Sergienko, A.V.: High capacity quantum key distribution via hyperentangled degrees of freedom. New J. Phys. 16(6), 063052 (2013)

    Article  Google Scholar 

  14. Yu, N.: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  ADS  Google Scholar 

  15. Dal Negro, L., Lawrence, N., Trevino, J.: Analytical light scattering and orbital angular momentum spectra of arbitrary Vogel spirals. Opt. Express 20(16), 18209–18223 (2012)

    Article  ADS  Google Scholar 

  16. Simon, D.S., Fitzpatrick, C.A., Sergienko, A.V.: Security in the multi-dimensional Fibonacci protocol. arXiv:1503.04448 (2015)

  17. Fraenkel, A.S., Klein, S.T.: Robust universal complete codes for transmission and compression. Discrete Appl. Math. 64, 31–55 (1996)

    Article  MATH  Google Scholar 

  18. Lai, H., Zhang, J., Luo, M.X., Pan, L., Pieprzyk, J., Xiao, F.Y., Orgun, M.A.: Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding. Sci. Rep. 6, 31350 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Hong Lai was supported by the National Natural Science Foundation of China (No. 61702427) and the Doctoral Program of Higher Education (No. SWU115091), the Fundamental Research Funds for the Central Universities (XDJK2018C048), and the financial support in part by the 1000-Plan of Chongqing by Southwest University (No. SWU116007). Mingxing Luo was supported by the National Natural Science Foundation of China (No. 61772437) and Sichuan Youth Science and Technique Foundation (No. 2017JQ0048). Josef Pieprzyk was supported by National Science Centre, Poland, Project Registration No. UMO-2014/15/B/ST6/05130. Cheng Zhan was supported by the National Natural Science Foundation of China (No. 61702426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, H., Luo, M., Orgun, M.A. et al. Tunable multi-party high-capacity quantum key distribution based on m-generalized Fibonacci sequences using golden coding. Quantum Inf Process 17, 246 (2018). https://doi.org/10.1007/s11128-018-2018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2018-3

Keywords

Navigation