Abstract
Entanglement distillation plays a very important role in quantum information science. Distillation of high-purity Greenberger–Horne–Zeilinger (GHZ) states has been widely studied. We here show that a pure GHZ-type entangled state or its local unitary (LU)-equivalent state could be extracted from two copies of a particular multipartite mixed state (e.g., an X state) in a single step. Such one-step distillation schemes for LU-equivalent states are expected to shed light on mixed-state manipulation and purification, as well as establish a link between entanglement classification and distillation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)
Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żukowsk, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012)
Pal, R., Bandyopadhyay, S., Ghosh, S.: Entanglement sharing through noisy qubit channels: one-shot optimal singlet fraction. Phys. Rev. A 90, 052304 (2014)
Wallnöfer, J., Dür, W.: Measurement-based quantum communication with resource states generated by entanglement purification. Phys. Rev. A 95, 012303 (2017)
Leditzky, F., Datta, N., Smith, G.: Useful states and entanglement distillation. arXiv preprint: arXiv:1701.03081 (2017)
Chitambar, E., Hsieh, M.H.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 (2016)
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)
Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)
Tan, X., Zhang, X.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15, 2137–2154 (2016)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Wang, X.W., Yang, G.J., Su, Y.H., Xie, M.: Simple schemes for quantum information processing with W-type entanglement. Quantum Inf. Process. 8, 431–442 (2009)
Wang, X.W., Zhang, D.Y., Yang, G.J., Tang, S.Q., Xie, L.J.: Remote information concentration and multipartite entanglement in multilevel systems. Phys. Rev. A 84, 042310 (2011)
Sheng, Y.B., Zhou, L., Long, G.L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)
Meng, F.X., Yu, X.T., Zhang, Z.C.: An economical state-dependent telecloning for a multiparticle GHZ state. Quantum Inf. Process. 17, 66 (2018)
Murao, M., Plenio, M.B., Popescu, S., Vedral, V., Knight, P.L.: Multiparticle entanglement purification protocols. Phys. Rev. A 57, R4075–4078 (1998)
Aschauer, H., Dür, W., Briegel, H.J.: Multiparticle entanglement purification for two-colorable graph states. Phys. Rev. A 71, 012319 (2005)
Chen, K., Lo, H.K.: Multi-partite quantum cryptographic protocols with noisy GHZ states. Quantum Inf. Comput. 7, 689–715 (2007)
Huber, M., Plesch, M.: Purification of genuine multipartite entanglement. Phys. Rev. A 83, 062321 (2011)
Das, T., Kumar, A., Pal, A.K., Shukla, N., Sen(De), A., Sen, U.: Canonical distillation of entanglement. Phys. Lett. A 381, 3529–3535 (2017)
Ruan, L., Dai, W., Win, M.Z.: Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels. arXiv preprint: arXiv:1706.07461 (2017)
Fang, K., Wang, X., Tomamichel, M., Duan, R.: Non-asymptotic entanglement distillation. arXiv preprint arXiv:1706.06221 (2017)
Krastanov, S., Albert, V.V., Jiang, L.: Optimized entanglement purification. arXiv preprint arXiv:1712.09762 (2017)
Baghbanzadeh, S., Rezakhani, A.T.: Distillation of free entanglement from bound entangled states using weak measurements. Phys. Rev. A 88, 062320 (2013)
Carle, T., Kraus, B., Dür, W., de Vicente, J.I.: Purification to locally maximally entangleable states. Phys. Rev. A 87, 012328 (2013)
Chen, P.X., Liang, L.M., Li, C.Z., Huang, M.Q.: Necessary and sufficient condition for distillability with unit fidelity from finite copies of a mixed state: the most efficient purification protocol. Phys. Rev. A 66, 022309 (2002)
Chen, P.X., Li, C.Z.: Distilling multipartite pure states from a finite number of copies of multipartite mixed states. Phys. Rev. A 69, 012308 (2004)
Czechlewski, M., Grudka, A., Ishizaka, S., Wójcik, A.: Entanglement purification protocol for a mixture of a pure entangled state and a pure product state. Phys. Rev. A 80, 014303 (2009)
Wang, X.W., Tang, S.Q., Yuan, J.B., Zhang, D.Y.: Distilling perfect GHZ states from two copies of non-GHZ-diagonal mixed states. Opt. Commun. 392, 185–189 (2017)
Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)
Kraus, B.: Local unitary equivalence and entanglement of multipartite pure states. Phys. Rev. A 82, 032121 (2010)
Liu, B., Li, J.L., Li, X., Qiao, C.F.: Local unitary classification of arbitrary dimensional multipartite pure states. Phys. Rev. Lett. 108, 050501 (2012)
Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)
Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)
Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)
Yu, Y.F., Feng, J., Zhan, M.S.: Remote information concentration by a Greenberger–Horne–Zeilinger state and by a bound entangled state. Phys. Rev. A 68, 024303 (2003)
Cunha, M.M., Fonseca, E.A., Moreno, M.G.M., Parisio, F.: Non-ideal teleportation of tripartite entanglement: Einstein–Podolsky–Rosen versus Greenberger–Horne–Zeilinger schemes. Quantum Inf. Process. 16, 254 (2017)
Joy, D., Surendran, S.P., Sabir, M.: Efficient deterministic secure quantum communication protocols using multipartite entangled states. Quantum Inf. Process. 16, 157 (2017)
Zhang, W., Qiu, D., Zou, X., Mateus, P.: Analyses and improvement of a broadcasting multiple blind signature scheme based on quantum GHZ entanglement. Quantum Inf. Process. 16, 150 (2017)
Martins, A.M.: Necessary and sufficient conditions for local unitary equivalence of multiqubit states. Phys. Rev. A 91, 042308 (2015)
Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459 (2007)
Hashemi Rafsanjani, S.M., Huber, M., Broadbent, C.J., Eberly, J.H.: Genuinely multipartite concurrence of N-qubit X matrices. Phys. Rev. A 86, 062303 (2012)
Qu, C.C., Zhou, L., Sheng, Y.B.: Entanglement concentration for concatenated Greenberger–Horne–Zeilinger state. Quantum Inf. Process. 14, 4131–4146 (2015)
Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077–2099 (2015)
Pan, J., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B., Wang, Q.: Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity. Quantum Inf. Process. 15, 1669–1687 (2016)
Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Wang, X.W., Yu, S., Zhang, D.Y., Oh, C.H.: Effect of weak measurement on entanglement distribution over noisy channels. Sci. Rep. 6, 22408 (2016)
Acknowledgements
This work was supported by the NSFC (Gant No. 11647129), the Scientific Research Fund of Hunan Provincial Education Department (Grant Nos. 15A028 and 16B036), the HNNSF (Grant Nos. 2016JJ2009 and 2017JJ3005), the Science and Technology Plan Project of Hunan Province (2016TP1020), Open Fund Project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang Normal University (IIPA18K07), and Opening Fund of Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education (QSQC1702).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yuan, J., Tang, S., Wang, X. et al. One-step distillation of local-unitary-equivalent GHZ-type states. Quantum Inf Process 17, 259 (2018). https://doi.org/10.1007/s11128-018-2034-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2034-3