Skip to main content
Log in

Quantum channel discrimination without entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We address the problem of unambiguous discrimination of quantum channels (UDQC) without entanglement. As our main result, we show that even in the absence of entanglement, partial UDQC (PUDQC) can still be performed—depending on the unknown given channel. We provide a necessary and sufficient condition for PUDQC and put forth a method to perform the PUDQC once the said condition is met. We propose the performance metrics that capture the expected performance of the PUDQC independent of the specific channels to be distinguished. Finally, we perform PUDQC on several qubit channel pairs as concrete examples and derive the proposed performance metrics for these channel pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Unambiguous discrimination refers to the scenario where the margin of error is zero in the announced result. Such methods of unambiguous discrimination in quantum state discrimination are obtained at the expense of allowing a nonzero probability of inconclusive results at the end of the protocol.

  2. This parameterization has a minor difference from standard parameterization on the Bloch sphere and leads to some redundant pairs of \(\phi \) and \(\theta \) values. We have made this choice because later in the article, we fix \(\phi = 0\), then the range of \(0 \le \theta \le 2\pi \) allows us to cover a whole circle in the XZ plane.

  3. A Bloch vector defines the location of a (possibly mixed) qubit in the Bloch sphere (ball). The density matrix corresponding to a Bloch vector is given by .

  4. We consider when \(\mathcal {N}_1\) is distinguishable from \(\mathcal {N}_2\). The other way round can be obtained using the same reasoning.

  5. In fact we can choose as well. The decisive event, then, will be observing the state \(|0\rangle \) at the output of the channel. This will not change the optimal POVMs and the value of \(\epsilon \).

References

  1. Xie, Y., Li, J., Malaney, R., Yuan, J.: Channel identification and its impact on quantum LDPC code performance. In: 2012 Australian Communications Theory Workshop (AusCTW), pp. 140–144 (2012)

  2. ur Rehman, J., Qaisar, S., Jeong, Y., Shin, H.: Security of a control key in quantum key distribution. Mod. Phys. Lett. B 31(11), 1750119 (2017)

    Article  Google Scholar 

  3. Qaisar, S., ur Rehman, J., Jeong, Y., Shin, H.: Practical deterministic secure quantum communication in a lossy channel. Prog. Theor. Exp. Phys. 2017(4), 041A01 (2017)

    Article  MathSciNet  Google Scholar 

  4. Shaham, A., Halevy, A., Dovrat, L., Megidish, E., Eisenberg, H.S.: Entanglement dynamics in the presence of controlled unital noise. Sci. Rep. 5, 10796 (2015)

    Article  ADS  Google Scholar 

  5. Fischer, D.G., Mack, H., Cirone, M.A., Freyberger, M.: Enhanced estimation of a noisy quantum channel using entanglement. Phys. Rev. A 64, 022309 (2001)

    Article  ADS  Google Scholar 

  6. Fujiwara, A., Imai, H.: Quantum parameter estimation of a generalized Pauli channel. J. Phys. A Math. Gen. 36(29), 8093 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ji, Z., Wang, G., Duan, R., Feng, Y., Ying, M.: Parameter estimation of quantum channels. IEEE Trans. Inf. Theory 54(11), 5172–5185 (2008)

    Article  MathSciNet  Google Scholar 

  8. Hayashi, M.: Quantum channel estimation and asymptotic bound. J. Phys. Conf. Ser. 233(1), 012016 (2010)

    Article  Google Scholar 

  9. Frey, M., Collins, D., Gerlach, K.: Probing the qudit depolarizing channel. J. Phys. A Math. Theor. 44(20), 205306 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. Ruppert, L., Virosztek, D., Hangos, K.: Optimal parameter estimation of Pauli channels. J. Phys. A Math. Theor. 45(26), 265305 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. Collins, D., Stephens, J.: Depolarizing-channel parameter estimation using noisy initial states. Phys. Rev. A 92, 032324 (2015)

    Article  ADS  Google Scholar 

  12. Suzuki, J.: Entanglement detection and parameter estimation of quantum channels. Phys. Rev. A 94, 042306 (2016)

    Article  ADS  Google Scholar 

  13. Acín, A.: Statistical distinguishability between unitary operations. Phys. Rev. Lett. 87, 177901 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chiribella, G., D’Ariano, G.M., Sacchi, M.F.: Optimal estimation of group transformations using entanglement. Phys. Rev. A 72, 042338 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Memory effects in quantum channel discrimination. Phys. Rev. Lett. 101, 180501 (2008)

    Article  ADS  Google Scholar 

  16. Li, L., Qiu, D.: Optimal discrimination between quantum operations. J. Phys. A Math. Theor. 41(33), 335302 (2008)

    Article  MathSciNet  Google Scholar 

  17. Matthews, W., Piani, M., Watrous, J.: Entanglement in channel discrimination with restricted measurements. Phys. Rev. A 82, 032302 (2010)

    Article  ADS  Google Scholar 

  18. Harrow, A.W., Hassidim, A., Leung, D.W., Watrous, J.: Adaptive versus nonadaptive strategies for quantum channel discrimination. Phys. Rev. A 81, 032339 (2010)

    Article  ADS  Google Scholar 

  19. Wang, Y.M., Li, J.G., Zou, J., Xu, B.M.: Quantum process discrimination with information from environment. Chin. Phys. B 25(12), 120302 (2016)

    Article  ADS  Google Scholar 

  20. Takeoka, M., Wilde, M.M.: Optimal estimation and discrimination of excess noise in thermal and amplifier channels. arxiv:1611.09165 (2016)

  21. Chattopadhyay, I., Sarkar, D.: Distinguishing quantum operations: LOCC versus separable operators. Int. J. Quantum Inf. 14(06), 1640028 (2016)

    Article  MathSciNet  Google Scholar 

  22. Puzzuoli, D., Watrous, J.: Ancilla dimension in quantum channel discrimination. Ann. Henri Poincaré 18(4), 1153–1184 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Pirandola, S., Lupo, C.: Ultimate precision of adaptive noise estimation. Phys. Rev. Lett. 118, 100502 (2017)

    Article  ADS  Google Scholar 

  24. Wang, G., Ying, M.: Unambiguous discrimination among quantum operations. Phys. Rev. A 73, 042301 (2006)

    Article  ADS  Google Scholar 

  25. Duan, R., Feng, Y., Ying, M.: Perfect distinguishability of quantum operations. Phys. Rev. Lett. 103, 210501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wu, X., Duan, R.: Exact quantum search by parallel unitary discrimination schemes. Phys. Rev. A 78, 012303 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lu, C., Chen, J., Duan, R.: Some bounds on the minimum number of queries required for quantum channel perfect discrimination. Quantum Inf. Comput. 12(1–2), 138–148 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Duan, R., Guo, C., Li, C.K., Li, Y.: Parallel distinguishability of quantum operations. In: 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, pp. 2259–2263 (2016)

  29. Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC ’98), Dallas, TX, USA, pp. 23–30 (1998)

  30. Yuan, H., Fung, C.H.F.: Fidelity and Fisher information on quantum channels. New J. Phys. 19(11), 113039 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Lü-Jun, L.: Ambiguous discrimination of general quantum operations. Commun. Theor. Phys. 62(6), 813 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Quantum circuit architecture. Phys. Rev. Lett. 101, 060401 (2008)

    Article  ADS  Google Scholar 

  33. Audenaert, K.M.R., Calsamiglia, J., noz Tapia, R.M., Bagan, E., Masanes, L., Acín, A., Verstraete, F.: Discriminating states: the quantum Chernoff bound. Phys. Rev. Lett. 98, 160501 (2007)

    Article  ADS  Google Scholar 

  34. Calsamiglia, J., noz Tapia, R.M., Masanes, L., Acín, A., Bagan, E.: Quantum Chernoff bound as a measure of distinguishability between density matrices: application to qubit and Gaussian states. Phys. Rev. A 77, 032311 (2008)

    Article  ADS  Google Scholar 

  35. Brandão, F.G.S.L., Plenio, M.B.: A generalization of quantum Stein’s lemma. Commun. Math. Phys. 295(3), 791–828 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  36. Cooney, T., Mosonyi, M., Wilde, M.M.: Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication. Commun. Math. Phys. 344(3), 797–829 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Berta, M., Brandão, F.G.S.L., Hirche, C.: On composite quantum hypothesis testing. arxiv:1709.07268 (2017)

  38. Bae, J., Kwek, L.C.: Quantum state discrimination and its applications. J. Phys. A Math. Theor. 48(8), 083001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  39. Cohen, S.M.: Class of unambiguous state discrimination problems achievable by separable measurements but impossible by local operations and classical communication. Phys. Rev. A 91, 012321 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. Yuan, H., Fung, C.H.F.: Quantum metrology matrix. Phys. Rev. A 96, 012310 (2017)

    Article  ADS  Google Scholar 

  41. Yuan, H., Fung, C.H.F.: Quantum parameter estimation with general dynamics. NPJ Quantum Inform. 3(1), 14 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1A2B2014462) and ICT R&D program of MSIP/IITP [R0190-15-2030, Reliable crypto-system standards and core technology development for secure quantum key distribution network].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youngmin Jeong or Hyundong Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ur Rehman, J., Farooq, A., Jeong, Y. et al. Quantum channel discrimination without entanglement. Quantum Inf Process 17, 271 (2018). https://doi.org/10.1007/s11128-018-2037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2037-0

Keywords

Navigation