Abstract
Uncertainty principle is at the heart of quantum physics, taking a fundamental and crucial role in the area of quantum information science, and it provides a remarkable lower bound to quantify our prediction for the measured outcome of two incompatible observables. Herein, the relationship between the lower bound of the measured uncertainty and quantum coherence is investigated under a one-dimensional Heisenberg XXZ spin model with Dzyaloshinskii–Moriya (DM) interactions, and the effect of DM interaction on the entropic uncertainty is also examined in details. We reveal the systematic temperature can give rise to the increase in the measurement uncertainty of interest at thermal equilibrium. By contrast, the stronger coupling strength \( \left| J \right| \) or the stronger DM interaction would induce the decrease in the amount with respect to the uncertainty. Moreover, we analyze the dynamical behaviors of quantum coherence and find that the bound of the uncertainty is oppositely correlated with the quantum coherence dramatically. Further, the effects of DM interaction along x-direction (characterized by the parameter Dx) and z-direction (characterized by Dz) on the uncertainty of interest are discussed, respectively. For the antiferromagnetic frame J > 0, it is interesting to obtain that x-direction DM interaction Dx exhibits a more powerful influence on reducing the uncertainty and enhancing the systematic coherence, when comparing with that of Dz. With these in mind, we wish our investigations would better understand the dynamical features of the measured uncertainty in the spin-based solid systems.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)
Kennard, E.H.: Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 44, 326 (1927)
Robertson, H.P.: Violation of Heisenberg’s uncertainty principle. Phys. Rev. 34, 163 (1929)
Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631–633 (1983)
Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)
Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)
Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659–662 (2010)
Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002)
Li, C.F., Xu, X.Y., Li, K., Guo, G.C.: Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys. 7, 752 (2011)
Tomamichel, M., Renner, R.: The uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)
Zhang, J., Zhang, Y., Yu, C.S.: Rényi entropy uncertainty relation for successive projective measurements. Quantum Inf. Process. 14, 2239 (2015)
Coles, P.J., Colbeck, R., Yu, L., Zwolak, M.: Uncertainty relations from simple entropic properties. Phys. Rev. Lett. 108, 210405 (2012)
Baek, K., Son, W.: Unsharpness of generalized measurement and its effects in entropic uncertainty relations. Sci. Rep. 6, 30228 (2016)
Pati, A.K., Wilde, M.M., Usha Devi, A.R., Rajagopal, A.K.: Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86, 042105 (2012)
Coles, P.J., Piani, M.: Improved entropic uncertainty relations and information exclusion relations. Phys. Rev. A 89, 022112 (2014)
Pramanik, T., Mal, S., Majumdar, A.S.: Lower bound of quantum uncertainty from extractable classical information. Quantum Inf. Process. 15, 981–999 (2016)
Adabi, F., Salimi, S., Haseli, S.: Tightening the entropic uncertainty bound in the presence of quantum memory. Phys. Rev. A 93, 062123 (2016)
Hu, M.L., Fan, H.: Quantum-memory-assisted entropic uncertainty principle, teleportation and entanglement witness in structured reservoirs. Phys. Rev. A 86, 032338 (2012)
Hu, M.L., Fan, H.: Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A 87, 022314 (2013)
Hu, M.L., Fan, H.: Upper bound and shareability of quantum discord based on entropic uncertainty relations. Phys. Rev. A 88, 014105 (2013)
Vallone, G., Marangon, D.G., Tomasin, M., Villoresi, P.: Quantum randomness certified by the uncertainty principle. Phys. Rev. A 90, 052327 (2014)
Miller, C.A., Shi, Y.: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, pp. 417–426. American Mathematical Society, New York (2014)
Koenig, R., Wehner, S., Wullschleger, J.: Unconditional security from noisy quantum storage. IEEE Trans. Inf. Theory 58, 1962–1984 (2012)
Dupuis, F., Fawzi, O., Wehner, S.: Entanglement sampling and applications. IEEE Trans. Inf. Theory 61, 1093 (2015)
Jarzyna, M., Demkowicz-Dobrzański, R.: True precision limits in quantum metrology. New J. Phys. 17, 013010 (2015)
Grosshans, F., Cerf, N.J.: Continuous-variable quantum cryptography is secure against non-Gaussian attacks. Phys. Rev. Lett. 92, 047905 (2004)
Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of Quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)
Shi, J.D., Ding, Z.Y., Wu, T., He, J., Yu, L.Z., Sun, W.Y., Wang, D., Ye, L.: Entanglement witness via quantum-memory-assisted entropic uncertainty relation. Laser Phys. Lett. 14, 125208 (2017)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Zou, H.M., Fang, M.F., Yang, B.Y., Guo, Y.N., He, W., Zhang, S.Y.: The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments. Phys. Scr. 89, 115101 (2014)
Zhang, Y.L., Fang, M.F., Kang, G.D., Zhou, Q.P.: Reducing quantum-memory-assisted entropic uncertainty by weak measurement and weak measurement reversal. Int. J. Quantum Inf. 13, 1550037 (2015)
Jia, L.J., Tian, Z.H., Jing, J.L.: Entropic uncertainty relation in de Sitter space. Ann. Phys. 353, 37–47 (2015)
Xu, Z.Y., Yang, W.L., Feng, M.: Quantum-memory-assisted entropic uncertainty relation under noise. Phys. Rev. A 86, 012113 (2012)
Yao, C.M., Chen, Z.H., Ma, Z.H., Severini, S., Serafini, A.: Entanglement and discord assisted entropic uncertainty relations under decoherence. Sci. China Phys. Mech. Astron. 57, 1703–1711 (2014)
Wang, D., Ming, F., Huang, A.J., Sun, W.Y., Shi, J.D., Ye, L.: Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame. Laser Phys. Lett. 14, 055205 (2017)
Feng, J., Zhang, Y.Z., Gould, M.D., Fan, H.: Entropic uncertainty relations under the relativistic motion. Phys. Lett. B 726, 527–532 (2013)
Ming, F., Wang, D., Huang, A.J., Sun, W.Y., Shi, J.D., Ye, L.: Decoherence effect on quantum-memory-assisted entropic uncertainty relations. Quantum Inf. Process. 17, 9 (2018)
Huang, A.J., Shi, J.D., Wang, D., Ye, L.: Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations. Quantum Inf. Process. 16, 46 (2017)
Zhang, G.F., Li, S.S.: Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field. Phys. Rev. A 72, 034302 (2005)
Shi, J.D., Wang, D., Ye, L.: Genuine multipartite entanglement as the indicator of quantum phase transition in spin system. Quantum Inf. Process. 15, 4629–4640 (2016)
Liang, Q.: Quantum correlations in a two-qubit Heisenberg XX model under intrinsic decoherence. Commun. Theor. Phys. 60, 391 (2013)
Asoudeh, M., Karimipour, V.: Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71, 022308 (2005)
Mahdavifar, S., Mahdavifar, S., Jafari, R.: Magnetic quantum correlations in the one-dimensional transverse-field XXZ model. Phys. Rev. A 96, 052303 (2017)
Wang, D., Ming, F., Huang, A.J., Sun, W.Y., Ye, L.: Entropic uncertainty for spin-1/2 XXX chains in the presence of inhomogeneous magnetic fields and its steering via weak measurement reversals. Laser Phys. Lett. 14, 095204 (2017)
Huang, A.J., Wang, D., Wang, J.M., Shi, J.D., Sun, W.Y., Ye, L.: Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field. Quantum Inf. Process. 16, 204 (2017)
Wang, D., Huang, A.J., Ming, F., Sun, W.Y., Lu, H.P., Liu, C.C., Ye, L.: Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field. Laser Phys. Lett. 14, 065203 (2017)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)
Huang, Z.M., Tian, Z.H.: Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime. Nucl. Phys. B 923, 458–474 (2017)
Chen, J.L., Deng, D.L., Su, H.Y., Wu, C.F., Oh, C.H.: Detecting full N-particle entanglement in arbitrarily-high-dimensional systems with Bell-type inequalities. Phys. Rev. A 83, 022316 (2011)
Chen, J.L., Ren, C.L., Chen, C.B., Ye, X.J., Pati, A.K.: Bell’s nonlocality can be detected by the violation of Einstein–Podolsky–Rosen steering inequality. Sci. Rep. 6, 39063 (2016)
Jiang, S.H., Xu, Z.P., Su, H.Y., Pati, A.K., Chen, J.L.: Generalized Hardy’s paradox. Phys. Rev. Lett. 120, 050403 (2018)
Sun, K., Ye, X.J., Xu, J.S., Xu, X.Y., Tang, J.S., Wu, Y.C., Chen, J.L., Li, C.F., Guo, G.C.: Experimental quantification of asymmetric Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 116, 160404 (2016)
Wang, J.C., Cao, H.X., Jing, J.L., Fan, H.: Gaussian quantum steering and its asymmetry in curved spacetime. Phys. Rev. D 93, 125011 (2016)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Zurek, W.K.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)
Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)
Acknowledgements
This work was supported by the National Science Foundation of China under Grant Nos. 61601002 and 11575001, Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139), the Key Research Foundation of Education Ministry of Anhui Province of China (Grant No. KJ2015A041) and the fund from CAS Key Laboratory of Quantum Information (Grant No. KQI201701).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ming, F., Wang, D., Shi, WN. et al. Exploring uncertainty relation and its connection with coherence under the Heisenberg spin model with the Dzyaloshinskii–Moriya interaction. Quantum Inf Process 17, 267 (2018). https://doi.org/10.1007/s11128-018-2038-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2038-z