Abstract
One central theme in quantum error correction is to construct quantum codes that have large minimum distances. It has been a great challenge to construct new quantum maximum-distance-separable (MDS) codes. Recently, some quantum MDS codes have been constructed from constacyclic codes. Under these constructions, one of the most important problems is to ensure these constacyclic codes are Hermitian dual-containing. This paper presents a method for determining the maximal designed distance of \([[n, k, d]]_q\) quantum MDS codes from constacyclic codes with fixed n and q. From the method, we can get not only those known quantum MDS codes from constacyclic codes but also a new class of quantum MDS code from Hermitian dual-containing MDS constacyclic code.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)
Cohen, G., Encheva, S., Litsyn, S.: On binary constructions of quantum codes. IEEE Trans. Inf. Theory 45(7), 2495–2498 (1999)
Chen, B., Fan, Y., Lin, L., Liu, H.: Constacyclic codes over finite fields. Finite Fields Appl. 18, 1217–1231 (2012)
Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)
Chen, H., Ling, S., Xing, C.: Quantum codes from concatenated algebraic-geometric codes. IEEE Trans. Inf. Theory 51(8), 2915–2920 (2005)
Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF (4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)
Feng, K.: Quantum codes \([[6, 2, 3]]_p\) and \([[7, 3, 3]]_p\) (\(p\ge 3\)) exist. IEEE Trans. Inf. Theory 48(8), 2384–2391 (2002)
Feng, K., Ling, S., Xing, C.: Asymptotic bounds on quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory 52(3), 986–991 (2006)
He, X., Xu, L., Chen, H.: New \(q\)-ary quantum MDS codes with distances bigger than \(\frac{q}{2}\). Quantum Inf. Process. 15(7), 2745–2758 (2016)
Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010)
Jin, L., Xing, C.: Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58, 5484–5489 (2012)
Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60, 2921–2925 (2014)
Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)
Krishna, A., Sarwate, D.V.: Pseudocyclic maximum-distance-separable codes. IEEE Trans. Inf. Theory 36(4), 880–884 (1990)
Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)
Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)
Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)
La Guardia, G.G.: New quantum MDS codes. IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011)
Ling, S., Luo, L., Xing, C.: Generalization of Steanes enlargement construction of quantum codes and applications. IEEE Trans. Inf. Theory 56(8), 4080–4084 (2010)
Li, S., Xiong, M., Ge, G.: Pseudo-cyclic codes and the construction of quantum MDS codes. IEEE Trans. Inf. Theory 62(4), 1703–1710 (2016)
Mi, J., Cao, X., Xu, S., Luo, G.: Quantum codes from Hermitian dual-containing cyclic codes. Int. J. Comput. Math. Comput. Syst. Theory 2(3), 97–109 (2017)
Shi, X., Yue, Q., Zhu, X.: Construction of some new quantum MDS codes. Finite Fields Appl. 46, 347–362 (2017)
Yang, Y., Cai, W.: On self-dual constacyclic codes over finite fields. Des. Codes Cryptogr. 74(2), 355–364 (2015)
Zhang, G., Chen, B., Li, L.: A construction of MDS quantum convolutional codes. Int. J. Theor. Phys. 54, 3182C3194 (2015)
Author information
Authors and Affiliations
Corresponding author
Additional information
The paper is partly supported by NNSF of China (Nos. 61602144, 61772015).
Rights and permissions
About this article
Cite this article
Hu, L., Yue, Q. & He, X. Quantum MDS codes from BCH constacyclic codes . Quantum Inf Process 17, 323 (2018). https://doi.org/10.1007/s11128-018-2049-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2049-9