Skip to main content
Log in

Demonstration of multiparty quantum clock synchronization

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum clock synchronization (QCS) is a kind of method to measure the time difference among spatially separated clocks with the principle of quantum mechanics. The first QCS algorithm proposed by Chuang and Jozsa is merely based on two parties, which is further extended and generalized to multiparty situation by Krco and Paul. They present a multiparty QCS protocol based upon W-state, utilizing shared prior entanglement and broadcasting the classical information to synchronize spatially separated clocks. Shortly afterward, Ben-Av and Exman came up with an optimized multiparty QCS based on Z-state. In this work, we firstly report the demonstrations of these two multiparty QCS protocols in a four-qubit liquid-state nuclear magnetic resonance system. The experimental results show a great agreement with the theoretical predictions and also prove that Ben-AV’s multiparty QCS algorithm is more accurate than Krco’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Welch, J.L., Lynch, N.: A new fault-tolerant algorithm for clock synchronization. Inf. Comput. 77(1), 1–36 (1988)

    Article  MathSciNet  Google Scholar 

  2. Lewandowski, W., Azoubib, J., Klepczynski, W.J.: GPS: primary tool for time transfer. Proc. IEEE 87, 163–172 (1999)

    Article  ADS  Google Scholar 

  3. Einstein, A.: Does the inertia of a body depend on its energy content? Ann. Phys. 18, 639641 (1905)

    Google Scholar 

  4. Eddington, A.S.: The Mathematical Theory of Relativity, 2nd edn. Cambridge University Press, Cambridge (1924)

    MATH  Google Scholar 

  5. Anderson, R., Vetharaniam, I., Stedman, G.E.: Conventionality of synchronisation, gauge dependence and test theories of relativity. Phys. Rep. 295, 93–180 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Jozsa, R., Abrams, D.S., Dowling, J.P., et al.: Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 85, 2010–2013 (2000)

    Article  ADS  Google Scholar 

  7. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  8. Deng, F.G., Gui, L.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 113–114 (2003)

    Google Scholar 

  9. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  10. Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  11. Preskill, J.: Quantum clock synchronization and quantum error correction. Preprint. arXiv:quant-ph/0010098 (2000)

  12. Chuang, I.L.: Quantum algorithm for distributed clock synchronization. Phys. Rev. lett. 85, 2006 (2000)

    Article  ADS  Google Scholar 

  13. Valencia, A., Scarcelli, G., Shih, Y.: Distant clock synchronization using entangled photon pairs. App. Phys. Lett. 85, 2655–2657 (2004)

    Article  ADS  Google Scholar 

  14. Quan, R., Zhai, Y., Wang, M., et al.: Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons. Sci. Rep. 6, 30453 (2016)

    Article  ADS  Google Scholar 

  15. Zhang, J., Long, G.L., Deng, Z., et al.: Nuclear magnetic resonance implementation of a quantum clock synchronization algorithm. Phys. Rev. A 70, 062322 (2004)

    Article  ADS  Google Scholar 

  16. Kro, M., Paul, P.: Quantum clock synchronization: multiparty protocol. Phys. Rev. A 66, 024305 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ben-Av, R., Exman, I.: Optimized multiparty quantum clock synchronization. Phys. Rev. A 84, 014301 (2011)

    Article  ADS  Google Scholar 

  18. Ren, C., Hofmann, H.F.: Clock synchronization using maximal multipartite entanglement. Phys. Rev. A 86, 014301 (2012)

    Article  ADS  Google Scholar 

  19. Dr, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. Vandersypen, L.M.K., Chuang, I.L.: NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037 (2005)

    Article  ADS  Google Scholar 

  21. Cory, D.G., Fahmy, A.F., Havel, T.F.: Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. 94, 1634–1639 (1997)

    Article  ADS  Google Scholar 

  22. Lu, D., Xu, N., Xu, R., et al.: Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator. Phys. Rev. Lett. 107, 020501 (2011)

    Article  ADS  Google Scholar 

  23. Lu, Y., Feng, G.R., Li, Y.S.: Experimental digital quantum simulation of temporal-spatial dynamics of interacting fermion system. Sci. Bull. 60, 241–248 (2015)

    Article  Google Scholar 

  24. Xin, T., Li, H., Wang, B.X., et al.: Realization of an entanglement-assisted quantum delayed-choice experiment. Phys. Rev. A 92, 022126 (2015)

    Article  ADS  Google Scholar 

  25. Pearson, J., Feng, G.R., Zheng, C.: Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system. Sci. China Phys. 59, 120312 (2016)

    Article  Google Scholar 

  26. Li, K., Long, G., Katiyar, H., et al.: Experimentally superposing two pure states with partial prior knowledge. Phys. Rev. A 95, 022334 (2017)

    Article  ADS  Google Scholar 

  27. Chuang, I.L., Vandersypen, L.M.K., Zhou, X., et al.: Experimental realization of a quantum algorithm. Nature 393, 143–146 (1998)

    Article  ADS  Google Scholar 

  28. Chuang, I.L., Gershenfeld, N., Kubinec, M.: Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80, 3408 (1998)

    Article  ADS  Google Scholar 

  29. Chuang, I.L., Gershenfeld, N., Kubinec, M.G.: Bulk quantum computation with nuclear magnetic resonance: theory and experiment. Phys. Eng. Sci. 454, 447–467 (1998)

    Article  Google Scholar 

  30. Barenco, A., Bennett, C.H., Cleve, R.: Elementary gates for quantum computation. Phys. Rev. A 52, 34573467 (1995)

    Article  Google Scholar 

  31. Khaneja, N., Reiss, T., Kehlet, C.: Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005)

    Article  ADS  Google Scholar 

  32. Ryan, C.A., Negrevergne, C., Laforest, M., et al.: Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods. Phys. Rev. A 78, 012328 (2008)

    Article  ADS  Google Scholar 

  33. Jones, J.A., Knill, E.: Efficient refocusing of one-spin and two-spin interactions for NMR quantum computation. J. Magn. Reson. 141, 322–325 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the following funding sources: National Natural Science Foundation of China under Grant Nos. 11774197 and 91221205; National Basic Research Program of China under Grant No. 2015CB921002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Kong.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 11774197 and 91221205), the National B5. The experimental details are still not presented with any clarity. In particular, experimental realization of step 3 being the phase delay and measurements. National Basic Research Program of China (2015CB921002).

Appendices

Appendix A: GRAPE robustness profiles

As we all know the GRAPE technical is to realize the optimal control of the coupled spin dynamics [31]. In this method, the chosen transfer time T is discretized in N equal steps of duration \(\Delta t=T/N\) and during each step, the control amplitudes are constant. The time evolution of the spin system during a time step j is given by the propagator

$$\begin{aligned} {U_j=\exp ^{-i\Delta t(H_0+X_j\cdot \sigma _x+Y_j\cdot \sigma _y)}=\exp ^{-i\Delta t(H_0+A_j(\cos (\phi _j) \sigma _x+\sin (\phi _j) \sigma _y))}} \end{aligned}$$
(24)

where the \(H_0\) is the internal Hamiltonian in Eq. 14, the \(X_j\) and \(Y_j\) are amplitudes of the radiofrequency (RF) pulses applied on the x and y axis, the \(A_j\) and \(\phi _j\) are the amplitudes and phases of RF pulses. The final density operator at time \(t=T\) is

$$\begin{aligned} {\rho (T)=U_N\ldots U_1\rho _0 U_1^{\dagger }\ldots U_N^{\dagger }} \end{aligned}$$
(25)

In our experiments to realize U in Eq. 17, we choose the \(T=20\) ms, \(N=4000\), \(\Delta t=5\upmu \)s, the \(A_j\) and \(\phi _j\) are calculated by the GRAPE method [31]. The pulses to realize U are designed to be robust to the static field distributions, RF inhomogeneity and decoherence. Then, we will prove the robustness in detail.

1.1 Static field distributions

In Ref. [20], we know that the static field distributions \(B_0\) only have the influences on \(\nu _j\) in the internal Hamiltonian \(H_0\). So we add some noises on \(B_0\) and the \(\nu _j\) in the Eq. 17 can be rewritten as \(\nu _j+\Delta \nu _j\). We assume that \(\Delta \nu _j\) is changing from \(-10\) Hz to 10 Hz for the real experimental noise is far less than 10 Hz. We compare the final density matrix with the theoretical value to obtain the fidelity. As shown in Fig. 8, the fidelities are all more than 0.99.

Fig. 8
figure 8

The robustness of static field distributions. The x axis is \(\Delta \nu _j\), changing from \(-10\) Hz to 10 Hz. The y axis represents the fidelities (in the normalization units)

Fig. 9
figure 9

The robuseness of RF inhomogenezity. The x axis in the left figure is \(\Delta A_j\), changing from \(-10\) Hz to 10 Hz and the x axis in the right figure is \(\Delta \phi _j\), changing from \(-5^{\circ }\) to \(5^{\circ }\). The y axis represents the fidelities (in the normalization units)

1.2 RF inhomogenezity

The radiofrequency (RF) pulses are applied on the x and y axis, the \(A_j\) and \(\phi _j\) are the amplitudes and phases of RF pulses. Similarly, we assume that the noise \(\Delta A_j\) is changing from \(-10\) Hz to 10Hz and the \(\Delta \phi _j\) is changing from \(-5^{\circ }\) to \(5^{\circ }\). As shown in Fig. 9, the fidelities are all more than 0.996.

1.3 Decoherence

The final density at time \(t=T\) is given by the Eq. 25. Considering the influence of decoherence, the time evolution of the spin system during a time step j is approximately given by the propagator:

$$\begin{aligned} U_j=\exp ^{-i\Delta t(H_0+A_j(\cos (\phi _j) \sigma _x+\sin (\phi _j) \sigma _y))}\cdot \exp ^{ -\frac{\Delta t}{T_2^1}\sigma _x}\otimes \exp ^{\frac{\Delta t}{T_2^2}\sigma _x}\otimes \exp ^{\frac{\Delta t}{T_2^3}\sigma _x}\otimes \exp ^{\frac{\Delta t}{T_2^4}\sigma _x} \end{aligned}$$
(26)

where \(\sigma _x\) is \(2\times 2\) Pauli operator, \(T_2^i\) are the decoherence time of ith carbon atom as shown in Fig. 2. Finally, we can obtain the fidelities with the influence of decoherence in the Table 2 and the result proves that our method are robust with decoherence with a length of 20 ms.

Appendix B: Fitting of the experimental spectrum

See Figs. 8, 9, 10 and Table 2.

Fig. 10
figure 10

The fitting of the spectrum of spin C4 in the final state. As shown in the Fig. 5f, we can not obtain the values of peaks directly. Through the method of fitting, we can obtain the values of peaks. The fitting results of \(|000\rangle \), \(|001\rangle \), \(|010\rangle \) and \(|011\rangle \) are 0.2824, 0.0123, \(-\,0.0143\) and \(-\,0.0118\)

Table 2 The influence of decoherence

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Xin, T., Wei, SJ. et al. Demonstration of multiparty quantum clock synchronization. Quantum Inf Process 17, 297 (2018). https://doi.org/10.1007/s11128-018-2057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2057-9

Keywords

Navigation