Abstract
The idea of semiquantum secret sharing (SQSS) is that quantum Alice wants to share secret information with clients such as Bob and Charlie who have limited quantum capability. Neither Bob nor Charlie can reconstruct the secret information unless they collaborate together. In existing semiquantum secret sharing protocols, clients generally need the ability of quantum measurement in classical basis and quantum parties usually need to access quantum memory. In this paper, we propose a relatively efficient SQSS protocol where limited Bob and Charlie can realize secret sharing without making any measurements and quantum Alice does not have to access quantum memory.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Blakley, G.R.: Safeguarding cryptographic keys. Proc. National Comput. Conf. 48, 313–317 (1979)
Gruska, J., Gruska, J.: Foundations of Computing. International Thomson Computer Press Boston, MA (1997)
Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58(12), 1131–1143 (1990)
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)
Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)
Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)
Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72(1), 012304 (2005)
Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 042309 (2008)
Bell, B., Markham, D., Herrera-Martí, D., Marin, A., Wadsworth, W., Rarity, J., Tame, M.: Experimental demonstration of graph-state quantum secret sharing (2014) arXiv preprint arXiv:1411.5827
Wang, M., Wang, W., Chen, J., Farouk, A.: Secret sharing of a known arbitrary quantum state with noisy environment. Quantum Inf. Process. 14(11), 4211–4224 (2015)
Zhu, Z., Hu, A., Fu, A.: Cryptanalysis of a new circular quantum secret sharing protocol for remote agents. Quantum Inf. Process. 12(2), 1173–1183 (2013)
Qin, S., Gao, F., Wen, Q., Zhu, F.: Cryptanalysis of the Hillery–Buzek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76(6), 062324 (2007)
Long, Y., Qiu, D., Long, D.: Quantum secret sharing of multi-bits by an entangled six-qubit state. J. Phys. A 45(19), 195303 (2012)
Jia, H., Wen, Q., Gao, F., Qin, S., Guo, F.: Dynamic quantum secret sharing. Phys. Lett. A 376(10), 1035–1041 (2012)
Liu, Z., Chen, H., Xu, J., Liu, W., Li, Z.: High-dimensional deterministic multiparty quantum secret sharing without unitary operations. Quantum Inf. Process. 11(6), 1785–1795 (2012)
Wu, Y., Cai, R., He, G., Zhang, J.: Quantum secret sharing with continuous variable graph state. Quantum Inf. Process. 13(5), 1085–1102 (2014)
Qin, H., Dai, Y.: Efficient quantum secret sharing. Quantum Inf. Process. 15(5), 2091–2100 (2016)
Wu, Y., Zhou, J., Gong, X., Guo, Y., Zhang, Z., He, G.: Continuous-variable measurement-device-independent multipartite quantum communication. Phys. Rev. A 93(2), 022325 (2016)
Qin, H., Zhu, X., Dai, Y.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)
Song, X., Liu, Y.: Cryptanalysis and improvement of verifiable quantum (k, n) secret sharing. Quantum Inf. Process. 15(2), 851–868 (2016)
Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)
Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Topics Quantum Electron. 21(3), 98–108 (2015)
Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011)
Li, Q., Li, Z., Chan, W.H., Zhang, S., Liu, C.: Blind quantum computation with identity authentication. Phys. Lett. A 382(14), 938–941 (2018)
Huang, W., Wen, Q.Y., Liu, B., Su, Q., Qin, S.J., Gao, F.: Quantum anonymous ranking. Phys. Rev. A 89(3), 032325 (2014)
Wang, Q., Yu, C., Gao, F., Qi, H., Wen, Q.Y.: Self-tallying quantum anonymous voting. Phys. Rev. A 94(2), 022333 (2016)
Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. A 99(14), 140501 (2007)
Li, Q., Chan, W.H., Zhang, S.: Quantum key distribution with classical Bob. Sci. Rep. 6(1), 19898 (2016)
Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)
Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(05), 1250050 (2012)
Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A: Math. Theor. 46(4), 045304 (2013)
Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54(10), 3819–3824 (2015)
Yin, A., Wang, Z., Fu, F.: A novel semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 31, 1750150 (2017)
Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56, 1–9 (2017)
Sun, Z.W., Du, R.G., Long, D.Y.: Quantum key distribution with limited classical bob. Int. J. Quantum Inf. 11(01), 1350005 (2013)
He, J., Li, Q., Wu, C., Chan, W.H., Zhang, S.: Measurement-device-independent semiquantum key distribution. Int. J. Quantum Inf. 16(2), 1850012 (2018)
Yang, C.W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(5), 1350052 (2013)
Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)
Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)
Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)
Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)
Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330 (2000)
Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77(13), 2818 (1996)
Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)
Krawec, W.O., Geiss, E.P.: Limited resource semi-quantum key distribution (2017) arXiv preprint arXiv:1710.05076
Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98(1), 010503 (2007)
Acknowledgements
This work was supported by the Joint Funds of the National Natural Science Foundation of China and China General Technology Research Institute (Grant No. U1736113), the National Natural Science Foundation of China (Grant No. 61772565), and the Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ2403).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, Z., Li, Q., Liu, C. et al. Limited resource semiquantum secret sharing. Quantum Inf Process 17, 285 (2018). https://doi.org/10.1007/s11128-018-2058-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2058-8