Skip to main content
Log in

Effects of measurement dependence on tilted CHSH Bell tests

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Device-independent (DI) randomness generations based on tilted CHSH Bell tests, different from other Bell tests, use a little entanglement but can produce quite a lot of certified randomness. In all these protocols, the violations of Bell inequalities which imply the generation of certified randomness rely on an assumption, i.e., measurement independence. Since ensuring measurement independence in a practical Bell test is difficult, it is crucial to explore effects of relaxing this assumption (called as measurement dependence). Naturally, a question, how measurement dependence affects tilted CHSH Bell tests, arise. In this paper, we answer this question. Concretely, we introduce measurement dependence with flexible lower bounds which are different from fixed lower bound and then qualify the effect of measurement dependence on tilted CHSH Bell tests with different input distributions. The results show that the effect of measurement dependence on tilted CHSH Bell tests with flexible lower bound of measurement dependence is more powerful than that of only considering fixed lower bound. The relevance of this work highlights the study of DI randomness amplification and other DI quantum information tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24(3), 379–385 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  2. Barrett, J., Linden, N., Massar, S., Pironio, S., Popescu, S., Roberts, D.: Nonlocal correlations as an information-theoretic resource. Phys. Rev. A 71, 022101 (2005)

    Article  ADS  Google Scholar 

  3. Gallego, R., Würflinger, L.E., Acín, A., Navascués, M.: Quantum correlations require multipartite information principles. Phys. Rev. Lett. 109, 070401 (2012)

    Article  ADS  Google Scholar 

  4. Christensen, B.G., Liang, Y.C., Brunner, N., Gisin, N., Kwiat, P.G.: Exploring the limits of quantum nonlocality with entangled photons. Phys. Rev. X 5, 041052 (2015)

    Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  Google Scholar 

  7. Vazirani, U., Vidick, T.: Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014)

    Article  ADS  Google Scholar 

  8. Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., Branciard, C., Walenta, N.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  9. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quant. 21, 6600111 (2015)

    Google Scholar 

  10. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  11. Wei, C.Y., Cai, X.Q., Liu, B., Wang, T.Y., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 99, 2–8 (2018)

    Article  MathSciNet  Google Scholar 

  12. Liu, B., Gao, F., Wei, C., Wen, Q.Y.: Qkd-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)

    Article  Google Scholar 

  13. Pironio, S., Acín, A., Massar, S., Giroday, A.B.D.L., Matsukevich, D.N., Maunz, P.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010)

    Article  ADS  Google Scholar 

  14. Pironio, S., Massar, S.: Security of practical private randomness generation. Phys. Rev. A 87, 012336 (2013)

    Article  ADS  Google Scholar 

  15. Fehr, S., Ran, G., Schaffner, C.: Security and composability of randomness expansion from Bell inequalities. Phys. Rev. A 87, 012335 (2013)

    Article  ADS  Google Scholar 

  16. Hall, M.J.W.: Local deterministic model of singlet state correlations based on relaxing measurement independence. Phys. Rev. Lett. 105, 250404 (2010)

    Article  ADS  Google Scholar 

  17. Hall, M.J.W.: Relaxed Bell inequalities and Kochen–Specker theorems. Phys. Rev. A 84, 022102 (2011)

    Article  ADS  Google Scholar 

  18. Koh, D.E., Hall, M.J., Pope, J.E., Marletto, C., Kay, A.: Effects of reduced measurement independence on Bell-based randomness expansion. Phys. Rev. Lett. 109, 160404 (2012)

    Article  ADS  Google Scholar 

  19. Thinh, L.P., Sheridan, L., Scarani, V.: Bell tests with min-entropy sources. Phys. Rev. A 87, 062121 (2013)

    Article  ADS  Google Scholar 

  20. Pope, J.E., Kay, A.: Limited measurement dependence in multiple runs of a Bell test. Phys. Rev. A 88, 032110 (2013)

    Article  ADS  Google Scholar 

  21. Pütz, G., Rosset, D., Barnea, T.J., Liang, Y.C., Gisin, N.: Arbitrarily small amount of measurement independence is sufficient to manifest quantum nonlocality. Phys. Rev. Lett. 113, 190402 (2014)

    Article  ADS  Google Scholar 

  22. Yuan, X., Cao, Z., Ma, X.: Randomness requirement on the Clauser–Horne–Shimony–Holt Bell test in the multiple-run scenario. Phys. Rev. A 91, 032111 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yuan, X., Zhao, Q., Ma, X.: Clauser–Horne Bell test with imperfect random inputs. Phys. Rev. A 92, 022107 (2015)

    Article  ADS  Google Scholar 

  24. Li, D.D., Zhou, Y.Q., Gao, F., Li, X.H., Wen, Q.Y.: Effects of measurement dependence on generalized Clauser–Horne–Shimony–Holt Bell test in the single-run and multiple-run scenarios. Phys. Rev. A 94, 012104 (2016)

    Article  ADS  Google Scholar 

  25. Colbeck, R., Renner, R.: Free randomness can be amplified. Nat. Phys. 8, 450 (2012)

    Article  Google Scholar 

  26. Gallego, R., Masanes, L., De, L.T.G., Dhara, C., Aolita, L., Acín, A.: Full randomness from arbitrarily deterministic events. Nat. Commun. 4, 2654 (2013)

    Article  Google Scholar 

  27. Brandão, F.G., Ramanathan, R., Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P.: Realistic noise-tolerant randomness amplification using finite number of devices. Nat. Commun. 7, 11345 (2016)

    Article  ADS  Google Scholar 

  28. Ramanathan, R., Brandão, F.G., Horodecki, K., Horodecki, M., Horodecki, P., Wojewódka, H.: Randomness amplification under minimal fundamental assumptions on the devices. Phys. Rev. Lett. 117, 230501 (2016)

    Article  ADS  Google Scholar 

  29. Bancal, J.D., Gisin, N., Liang, Y.C., Pironio, S.: Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 106, 250404 (2011)

    Article  ADS  Google Scholar 

  30. Barreiro, J.T., Bancal, J.D., Schindler, P., Nigg, D., Hennrich, M., Monz, T.: Demonstration of genuine multipartite entanglement with device-independent witnesses. Nat. Phys. 9, 559–562 (2013)

    Article  Google Scholar 

  31. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 3 (1964)

    Article  MathSciNet  Google Scholar 

  32. Bell, J.S., Aspect, A.: Speakable and Unspeakable in Quantum Mechanics: How to Teach Special Relativity. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  33. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1971)

    Article  ADS  Google Scholar 

  34. Wehner, S.: Tsirelson bounds for generalized Clauser–Horne–Shimony–Holt inequalities. Phys. Rev. A 73, 022110 (2006)

    Article  ADS  Google Scholar 

  35. Acín, A., Massar, S., Pironio, S.: Randomness versus nonlocality and entanglement. Phys. Rev. Lett. 108, 100402 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable suggestions. This work is supported by National Natural Science Foundation of China (Grant Nos. 61802023, 61701553), the Fundamental Research Funds for the Central Universities (Grant Nos. 2018RC21, 500418776), Joint Funds of National Natural Science Foundation of China and Xinjiang (Grant No. U1603261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan-Dan Li.

Appendix

Appendix

1.1 Appendix A: the general input distributions

We show the deduction of Theorem 1.

Proof

Based on the lower bound and upper bound of measurement dependence, we get

$$\begin{aligned} l\le p'\left( X_{j},Y_{k}|\lambda \right) \le h, \quad \forall {j, k,\lambda ,} \end{aligned}$$
(19)

where \(j,k\in \{0,1\}\).

For an arbitrary tuple \((X_{j},Y_{k},\lambda )\), let

$$\begin{aligned} p\left( X_{j}, Y_{k}|\lambda \right) =\frac{p'\left( X_{j}, Y_{k}|\lambda \right) -l}{1-4l}. \end{aligned}$$
(20)

The constrains on \(p'(X_{j}, Y_{k}|\lambda )\) can be converted to the following constrains:

$$\begin{aligned} 0\le & {} p\left( X_{j}, Y_{k}|\lambda \right) \le \frac{h-l}{1-4l}, \quad \forall j, k, \lambda , \end{aligned}$$
(21)
$$\begin{aligned} \sum _{j,k}p\left( X_{j}, Y_{k}|\lambda \right)= & {} \sum _{j,k} \frac{p'\left( X_{j}, Y_{k}|\lambda \right) -l}{1-4l}\nonumber \\= & {} \frac{\sum _{j,k}\left[ p'\left( X_{j}, Y_{k}|\lambda \right) -l\right] }{1-4l}\nonumber \\= & {} \frac{\sum _{j,k}p'\left( X_{j}, Y_{k}|\lambda \right) -4l}{1-4l}\nonumber \\= & {} 1, \end{aligned}$$
(22)

where the last equality holds according to \(\sum _{j,k}p'(X_{j}, Y_{k}|\lambda )=1\).

So, we focus on the case that \(l=0\).

Let \(p_{A}(-1|X_{j},\lambda )=m_{j},\) \( p_{B}(-1|Y_{k},\lambda )=n_{k},\) \(p(-1,-1|X_{j},Y_{k},\lambda )=c_{j,k},\) we get

$$\begin{aligned} p\left( -1,1|X_{j},Y_{k},\lambda \right)= & {} m_{j}-c_{j,k},\nonumber \\ p\left( 1,-1|X_{j},Y_{k},\lambda \right)= & {} n_{k}-c_{j,k},\nonumber \\ p\left( 1,1|X_{j},Y_{k},\lambda \right)= & {} 1+c_{j,k}-m_{j}-n_{k}. \end{aligned}$$
(23)

Hence, \(p(a, b|X_{j},Y_{k},\lambda )\in \{c_{j,k}, m_{j}-c_{j,k}, n_{k}-c_{j,k}, 1+c_{j,k}-m_{j}-n_{k}\}\).

As we know, \(c_{j,k}\) satisfies

$$\begin{aligned} \max \{0,m_{j}+n_{k}-1\}\le c_{j,k}\le \min \{m_{j},n_{k}\}. \end{aligned}$$
(24)

where

$$\begin{aligned} \min \{x,y\}= & {} \frac{1}{2}\left[ x+y-|x-y|\right] ,\nonumber \\ \max \{x,y\}= & {} \frac{1}{2}\left[ x+y+|x-y|\right] . \end{aligned}$$
(25)

Based on the definition of \(\langle X_{j}Y_{k}\rangle \), we get

$$\begin{aligned} \begin{aligned} \left\langle X_{j}Y_{k}\right\rangle&=\sum p\left( a=b|X_{j},Y_{k}\right) -\sum p\left( a\ne b|X_{j},Y_{k}\right) \\&=1+4c_{jk}-2\left( m_{j}+n_{k}\right) . \end{aligned} \end{aligned}$$
(26)

So, by using Eqs. (24), (25), (26), we have

$$\begin{aligned} 2\left| m_{j}+n_{k}-1\right| -1\le \left\langle X_{j}Y_{k}\right\rangle \le 1-2\left| m_{j}+n_{k}\right| . \end{aligned}$$
(27)

Thus, \(\widetilde{I}_{\alpha }^{\beta }\) can be described by

$$\begin{aligned} \begin{aligned} \widetilde{I}_{\alpha }^{\beta }=\,&\beta \left\langle X_{0}\right\rangle +\alpha \left\langle X_{0}Y_{0}\right\rangle +\alpha \left\langle X_{0}Y_{1}\right\rangle +\,\left\langle X_{1}Y_{0}\right\rangle -\left\langle X_{1}Y_{1}\right\rangle \\ =\,&\sum _{\lambda }p(\lambda )\left[ \beta p\left( \lambda |X_{0}\right) \langle X_{0}\rangle _{\lambda }+\alpha p\left( \lambda |X_{0}Y_{0}\right) \langle X_{0}Y_{0}\rangle _{\lambda }+\alpha p\left( \lambda |X_{0}Y_{1}\right) \langle X_{0}Y_{1}\rangle _{\lambda }\right. \\&\left. +\,p\left( \lambda |X_{1}Y_{0}\right) \langle X_{1}Y_{0}\rangle _{\lambda } -p\left( \lambda |X_{1}Y_{1}\right) \langle X_{1}Y_{1}\rangle _{\lambda }\right] \\ \le \,&\sum _{\lambda }p(\lambda )\left[ \beta p\left( \lambda |X_{0}\right) \left( 1-2m_{0}\right) +(\alpha -1)p\left( \lambda |X_{0}Y_{0}\right) \left( 1-2|m_{0}-n_{0}|\right) \right. \\&+\,(\alpha -1)p\left( \lambda |X_{0}Y_{1}\right) \left( 1-2|m_{0}-n_{1}|\right) +p\left( \lambda |X_{0}Y_{0}\right) \left( 1-2|m_{0}-n_{0}|\right) \\&+\,p\left( \lambda |X_{0}Y_{1}\right) \left( 1-2|m_{0}-n_{1}|\right) +p\left( \lambda |X_{1}Y_{0}\right) \left( 1-2|m_{1}-n_{0}|\right) \\&\left. -\,p\left( \lambda |X_{1}Y_{1}\right) \left( 2|m_{1}+n_{1}-1|-1\right) \right] \\ =\,&\beta +2(\alpha -1)-2\sum _{\lambda }p(\lambda )\left[ \beta p\left( \lambda |X_{0}\right) m_{0}+(\alpha -1)p\left( \lambda |X_{0}Y_{0}\right) |m_{0}-n_{0}|\right. \\&\left. +\,(\alpha -1)p\left( \lambda |X_{0}Y_{1}\right) |m_{0}-n_{1}|\right] +4-2\sum _{\lambda }p(\lambda )\left[ p\left( \lambda |X_{0}Y_{0}\right) |m_{0}-n_{0}|\right. \\&\left. +\,p\left( \lambda |X_{0}Y_{1}\right) |m_{0}-n_{1}| +p\left( \lambda |X_{1}Y_{0}\right) |m_{1}-n_{0}| -p\left( \lambda |X_{1}Y_{1}\right) |m_{1}+n_{1}-1|\right] \\ \le \,&\beta +2\alpha +2-2\beta \min p\left( X_{0} |\lambda \right) m_{1}-4(\alpha -1)\min _{j,k\in \{0,1\}} p\left( X_{j}Y_{k}|\lambda \right) |n_{0}-n_{1}|\\&-\,8(2G-1)\min _{j,k\in \{0,1\}}p\left( X_{j}Y_{k}|\lambda \right) \\ \le \,&\beta +2\alpha +2-8(2G-1)\sum _{\lambda }p(\lambda ) \min _{j,k\in \{0,1\}}p\left( X_{j}Y_{k}|\lambda \right) ,\\ \end{aligned} \end{aligned}$$
(28)

when the conditions \(m_{1}=0\) and \(n_{0}=n_{1}\) can be satisfied, “=” holds.

In the following, based on results of Ref. [18], we get the values of \(\min p(X_{j},Y_{k}|\lambda )\):

  1. (a)

    suppose that \(h\ge \frac{1}{3}\), we always find that \(\min p(X_{j},Y_{k}|\lambda )=0\).

  2. (b)

    if \(\frac{1}{4}\le h \le \frac{1}{3},\) let \(p(X_{j},Y_{k}|\lambda )=h\) except for \(p(X_{j_{1}},Y_{k_{1}}|\lambda )\) where \((j_{1},k_{1})\ne (j,k)\), so, \(\min p(X_{j},Y_{k}|\lambda )=p(X_{j_{1}},Y_{k_{1}}|\lambda )=1-3h\). Then, Eq. (28) can be given by

    $$\begin{aligned} \begin{aligned}&\widetilde{I}_{\alpha }^{\beta }={\left\{ \begin{array}{ll} \beta +2\alpha +2, &{}\quad {h\ge \frac{1}{3}},\\ \beta +2\alpha +2-8(2G-1)(1-3h),&{}\quad {\frac{1}{4}\le h\le \frac{1}{3}}. \end{array}\right. } \end{aligned} \end{aligned}$$
    (29)

Next, \(I_{\alpha }^{\beta }\) can be reproduced as

$$\begin{aligned} \begin{aligned} I_{\alpha }^{\beta }=&\,\beta \langle X_{0}\rangle +\alpha \langle X_{0}Y_{0}\rangle +\alpha \langle X_{0}Y_{1}\rangle +\langle X_{1}Y_{0}\rangle -\langle X_{1}Y_{1}\rangle \\ =&\,\beta +2(\alpha -1)-2\sum _{\lambda }p(\lambda )\left[ \beta p'\left( \lambda |X_{0}\right) m_{0}+(\alpha -1)p'\left( \lambda |X_{0}Y_{0}\right) |m_{0}-n_{0}|\right. \\&\left. +\,(\alpha -1)p'\left( \lambda |X_{0}Y_{1}\right) |m_{0}-n_{1}|\right] +4-2\sum _{\lambda }p(\lambda )\left[ p'\left( \lambda |X_{0}Y_{0}\right) |m_{0}-n_{0}|\right. \\&\left. +\,p'\left( \lambda |X_{0}Y_{1}\right) |m_{0}-n_{1}|+p'\left( \lambda |X_{1}Y_{0}\right) |m_{1}-n_{0}|-p'\left( \lambda |X_{1}Y_{1}\right) |m_{1}+n_{1}-1|\right] \\ \le \,&\beta +2(\alpha -1)-2\beta \frac{\min p\left( X_{0}|\lambda \right) -2l}{1-2l}m_{1}-4(\alpha -1)\min _{(0,0),(0,1)}\frac{p'\left( X_{j}Y_{k} |\lambda \right) -l}{1-4l}\\&|n_{0}-n_{1}|+4-8(2G-1) \min _{j,k\in \{0,1\}} \frac{p'\left( X_{j}Y_{k}|\lambda \right) -l}{1-4l}\\ \le&\,\frac{1}{1-4l}\left[ \beta +2\alpha +2-2\beta \min \left( p(X_{0}|\lambda \right) m_{1}-l)-4(\alpha -1) \min _{j,k\in \{0,1\}}\left( p\left( X_{j}Y_{k}|\lambda \right) \right. \right. \\&\left. \left. -l\right) |n_{0}-n_{1}|-8(2G-1) \min _{j,k\in \{0,1\}} \left( p\left( X_{j}Y_{k}|\lambda \right) -l\right) \right] .\\ \end{aligned} \end{aligned}$$
(30)

Based on Eqs. (28), (30), we get the relation between \(I_{\alpha }^{\beta }\) and \(\widetilde{I}_{\alpha }^{\beta }\) in the following

$$\begin{aligned} I_{\alpha }^{\beta }=(1-4l)\widetilde{I}_{\alpha }^{\beta } +4\beta l+8(\alpha -1)l+8l. \end{aligned}$$
(31)

Thus, we give the following results:

(a)    when \(\frac{h-l}{1-4l}\ge \frac{1}{3}\), that is, \(3h+l\ge 1\), we get

$$\begin{aligned} \begin{aligned} I_{\alpha }^{\beta }&=(1-4l)\widetilde{I}_{\alpha }^{\beta }+4\beta l+8(\alpha -1)l+8l\\&=\beta +2\alpha +2-8l, \end{aligned} \end{aligned}$$
(32)

(a)    when \(\frac{h-l}{1-4l}< \frac{1}{3}\), that is, \(3h+l< 1\), we obtain

$$\begin{aligned} I_{\alpha }^{\beta }=\tilde{I}_{\alpha }^{\beta } =\beta +2\alpha +2-8(2G-1)(1-3h). \end{aligned}$$
(33)

All in all, with flexible lower bounds of measurement dependence, we get

$$\begin{aligned} \begin{aligned}&I_{\alpha }^{\beta }(G,l,h)={\left\{ \begin{array}{ll}\beta +2\alpha +2-8l, &{}\quad {3h+l\ge 1},\\ \beta +2\alpha +2-8(2G-1)(1-3h),&{}\quad {3h+l<1}. \end{array}\right. } \end{aligned} \end{aligned}$$
(34)

We complete proof of Theorem 1. \(\square \)

1.2 Appendix B: the factorizable input distributions

We show the deduction of Theorem 2.

Proof

The derivation process of \(\widetilde{I}_{\alpha }^{\beta }\) is similar to the proof of Theorem 1. Firstly, we still discuss the case that fixes lower bound.

Based on Eq. (28), we only compute the bound of \(\min p(X_{j},Y_{k}|\lambda )\) in the factorizable input distribution as follows.

  1. (a)

    Suppose that \(h\ge \frac{1}{2}\), we always find that \(l=\min p(X_{j},Y_{k}|\lambda )=0\).

  2. (b)

    If \(\frac{1}{4}\le h \le \frac{1}{2},\) we have

    $$\begin{aligned} \begin{aligned} \min p\left( X_{j},Y_{k}|\lambda \right)&=\left( 1-\max p\left( X_{j}|\lambda \right) \right) \left( 1-\max p\left( Y_{k}|\lambda \right) \right) \\&=1-\max p\left( X_{j}|\lambda \right) -\max p\left( Y_{k}|\lambda \right) +h. \end{aligned} \end{aligned}$$
    (35)

    By computation, we get \(\min p\left( X_{j},Y_{k}|\lambda \right) =\frac{1}{2}-h\).

Then, Eq. (28) in the factorizable input distributions can be given by

$$\begin{aligned} \begin{aligned}&\widetilde{I}_{\alpha }^{\beta }={\left\{ \begin{array}{ll} \beta +2\alpha +2, &{}\quad {h\ge \frac{1}{2}},\\ \beta +2\alpha +2-4(2G-1)(1-2h),&{}\quad {\frac{1}{4}\le h<\frac{1}{2}}. \end{array}\right. } \end{aligned} \end{aligned}$$
(36)

Similar to the method of Theorem 1, we consider the case of flexible lower bound. By combining Eq. (36) with Eq. (31) , we get

$$\begin{aligned} \begin{aligned}&I_{\alpha }^{\beta }={\left\{ \begin{array}{ll} \beta +2\alpha +2-8l, &{}\quad {h+l\ge \frac{1}{2}},\\ \beta +2\alpha +2-4(2G-1)(1-2h),&{}\quad { h+l<\frac{1}{2}}. \end{array}\right. } \end{aligned} \end{aligned}$$
(37)

We complete proof of Theorem 2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XH., Li, DD. & Zhang, P. Effects of measurement dependence on tilted CHSH Bell tests. Quantum Inf Process 17, 291 (2018). https://doi.org/10.1007/s11128-018-2060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2060-1

Keywords

Navigation