Skip to main content
Log in

Coherence, detectability and correlation in the generalized Coleman–Hepp model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Coherence, detectability and correlation in a quantum measurement process are studied by means of the generalized Coleman–Hepp model, in which a spin of a propagating particle is measured and a detector system consists of a one-dimensional array of independent spin-1/2 particles. It is found that the coherence of the measured particle decreases in time, while the detectability of the particle spin by the whole detector system increases. The coherence and detectability satisfy a trade-off relation. The correlation between the particle spin and the whole detector system grows in time and its dependence on the interaction strength is clarified. On the other hand, after the correlation between the particle spin and the individual detector particle is created by the interaction, it decays in time due to the interaction with another detector particle. It is shown that the strong particle–detector interaction not only creates large correlation but also causes the rapid decay of the correlation. In the asymptotic limit, the entanglement between the particle spin and the individual detector particle becomes zero, while the quantum discord can take finite values. Furthermore, a numerical calculation reveals that the optimum measurement for detecting the particle spin is equal to that quantifying the classical correlation and the quantum discord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  2. Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

    Google Scholar 

  3. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, New York (1993)

    MATH  Google Scholar 

  4. Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory for the Perplexed. Wiley, Weinheim (2005)

    Book  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  7. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–774 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  10. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  11. Paris, G.A., Řeháček, J. (eds.): Quantum State Estimation. Springer, Berlin (2010)

    Google Scholar 

  12. Hepp, K.: Quantum theory of measurement and macroscopic observables. Helv. Phys. Acta 45, 237–344 (1972)

    Google Scholar 

  13. Namiki, M., Pascazio, S., Nakazato, H.: Decoherence and Quantum Measurements. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  14. Kobayashi, T.: Exactly calculable model for a detector with macroscopic energy emissions and wave-function collapse in quantum measurements. Phys. Lett. A 185, 349–354 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hakazato, H., Pascazio, S.: Solvable dynamical model for a quantum measurement process. Phys. Rev. Lett. 70, 1066–1081 (1993)

    MathSciNet  Google Scholar 

  16. Hakazato, H., Pascazio, S.: Macroscopic limit of a solvable dynamical model. Phys. Rev. A 48, 1066–1081 (1993)

    Article  ADS  Google Scholar 

  17. Hiyama, K., Takagi, S.: Generalized Coleman–Hepp model and quantum coherence. Phys. Rev. A 48, 2586–2597 (1993)

    Article  ADS  Google Scholar 

  18. Kitajima, S., Shibata, F.: Dynamical processes in exactly solvable quantum mechanical systems I. J. Phys. Sos. Jpn. 69, 73–87 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kitajima, S., Yamaguchi, R., Shibata, F.: Dynamical processes in exactly solvable quantum mechanical systems II. J. Phys. Soc. Jpn. 69, 2004–2010 (2000)

    Article  ADS  Google Scholar 

  20. Kitajima, S., Shibata, F.: Dynamical processes in exactly solvable quantum mechanical systems III. J. Phys. Soc. Jpn. 70, 2273–2282 (2001)

    Article  ADS  Google Scholar 

  21. Ban, M., Kitajima, S., Shibata, F.: Generalized model of the quantum measurement process in an environment. Phys. Rev. A 79, 032113 (2009)

    Article  ADS  Google Scholar 

  22. Kitajima, S., Takahashi, C., Shibata, F.: Quantum dynamics and decoherence in generalized Coleman–Hepp model and boson detector model. Eur. J. Phys. D 30, 417–423 (2004)

    Article  ADS  Google Scholar 

  23. Zhu, M., Liu, Y., Lu, J., Zhou, L.: Quantum correlation for two-qubit systems interacting with macroscopic objects. Quant. Inf. Process. 15, 2805–2817 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  25. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  27. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  28. Barnett, S.M., Radmore, P.M.: Methods in Theoretical Optics. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  29. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6905 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  30. Englert, B.: Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154–2157 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. S. Kitajima of Ochanomizu University for useful comments and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Ban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishizaki, M., Ban, M. Coherence, detectability and correlation in the generalized Coleman–Hepp model. Quantum Inf Process 17, 290 (2018). https://doi.org/10.1007/s11128-018-2065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2065-9

Keywords

Navigation