Skip to main content
Log in

Practical aspects of terahertz wireless quantum key distribution in indoor environments

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We discuss the feasibility of continuous-variable wireless quantum key distribution (WQKD) with thermal Gaussian states in terahertz (THz) band. We rigorously analyze the secret key rate of practical WQKD system using direct reconciliation and homodyne detection against collective Gaussian attacks. The results show that in the case of low-gain antenna, the free space loss is the dominant limiting factor of secure transmission distance of THz WQKD system. When the antenna diameter increases from 1 to 5 cm, we can get the maximum security distance and its corresponding optimal frequency in the range of 0.1–1 THz. We also obtain that a security distance of 1.95 m can be achieved when using a 5-cm diameter antenna and controlling the excess noise below 0.25 simultaneously. Specifically, we study the finite size effects and show that the transmission distance can reach 78 cm with a 5-cm diameter antenna at the frequency of 300 GHz. This work takes an important step toward short distance wireless QKD system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bennet, C.H.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computer, System and Signal Processing, Bangalore, India, 10–12 Dec 1984 (1984)

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057,902 (2002)

  4. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  5. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)

    Article  ADS  Google Scholar 

  6. Korzh, B., Lim, C.C.W., Houlmann, R., Gisin, N., Li, M.J., Nolan, D., Sanguinetti, B., Thew, R., Zbinden, H.: Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photonics 9(3), 163 (2015)

    Article  ADS  Google Scholar 

  7. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, J.G.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010,504 (2007)

  8. Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen, Q., Cao, Y., Li, Z.P., et al.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43 (2017)

    Article  ADS  Google Scholar 

  9. Elser, D., Bartley, T., Heim, B., Wittmann, C., Sych, D., Leuchs, G.: Feasibility of free space quantum key distribution with coherent polarization states. New J. Phys. 11(4), 045,014 (2009)

    Article  ADS  Google Scholar 

  10. Qu, Z., Djordjevic, I.B.: Four-dimensionally multiplexed eight-state continuous-variable quantum key distribution over turbulent channels. IEEE Photonics J. 9(6), 1–8 (2017)

    Article  Google Scholar 

  11. Elmabrok, O., Razavi, M.: Feasibility of wireless quantum key distribution in indoor environments. In: 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1–2. IEEE (2015)

  12. Elmabrok, O., Razavi, M.: Wireless quantum key distribution in indoor environments. JOSA B 35(2), 197–207 (2018)

    Article  ADS  Google Scholar 

  13. Weedbrook, C., Pirandola, S., Lloyd, S., Ralph, T.C.: Quantum cryptography approaching the classical limit. Phys. Rev. Lett. 105(11), 110,501 (2010)

  14. Garcia-Patron, R.: Quantum information with optical continuous variables: from bell tests to key distribution. Ph.D dissertation, Université Libre de Bruxelles (2008)

  15. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421(6920), 238 (2003)

    Article  ADS  Google Scholar 

  16. Weedbrook, C., Pirandola, S., Ralph, T.C.: Continuous-variable quantum key distribution using thermal states. Phys. Rev. A 86(2), 022,318 (2012)

  17. Weedbrook, C., Ottaviani, C., Pirandola, S.: Two-way quantum cryptography at different wavelengths. Phys. Rev. A 89(1), 012,309 (2014)

  18. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93(17), 170504 (2004)

    Article  ADS  Google Scholar 

  19. Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(01), 1–127 (2008)

    Article  Google Scholar 

  20. Grosshans, F., Cerf, N.J., Wenger, J., Tualle-Brouri, R., Grangier, P.: Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quantum Inf. Comput. 3(7), 535–552 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge/New York (2000)

    MATH  Google Scholar 

  22. Wolf, M.M., Giedke, G., Cirac, J.I.: Extremality of gaussian quantum states. Phys. Rev. Lett. 96(8), 080,502 (2006)

  23. García-Patrón, R., Cerf, N.J.: Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97(19), 190,503 (2006)

  24. Leverrier, A., Grangier, P.: Simple proof that gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a gaussian modulation. Phys. Rev. A 81(6), 062,314 (2010)

  25. Wang, R., Yao, J., Xu, D., Wang, J., Wang, P.: The physical theory and propagation model of thz atmospheric propagation. In: Journal of Physics Conference Series, vol. 276 (2011)

    Google Scholar 

  26. Siegel, P.H.: Terahertz technology. IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002)

    Article  ADS  Google Scholar 

  27. Hosako, I., Sekine, N., Patrashin, M., Saito, S., Fukunaga, K., Kasai, Y., Baron, P., Seta, T., Mendrok, J., Ochiai, S.: At the dawn of a new era in terahertz technology. Proc. IEEE 95(8), 1611–1623 (2007)

    Article  Google Scholar 

  28. Cetnar, J.S.: Atmospheric effects on the propagation of mmw and sub-mmw radiation. Ph.D. thesis, Wright State University (2010)

  29. Hewison, T.J., Cimini, D., Martin, L., Gaffard, C., Nash, J.: Validating clear air absorption models using ground-based microwave radiometers and vice-versa. Meteorol. Z. 15(1), 27–36 (2006)

    Article  Google Scholar 

  30. Schneider, T., Wiatrek, A., Preußler, S., Grigat, M., Braun, R.P.: Link budget analysis for terahertz fixed wireless links. IEEE Trans. Terahertz Sci. Technol. 2(2), 250–256 (2012)

    Article  ADS  Google Scholar 

  31. Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., Schoebei, J., Kurner, T.: Short-range ultra-broadband terahertz communications: concepts and perspectives. IEEE Antennas Propag. Mag. 49(6), 24–39 (2007)

    Article  ADS  Google Scholar 

  32. Kleine-Ostmann, T., Nagatsuma, T.: A review on terahertz communications research. J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011)

    Article  Google Scholar 

  33. Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76(4), 042,305 (2007)

  34. Virginia diodes inc. http://vadiodes.com/en/products/straight-waveguides-tapers-horn-antenna-directional-couplers. Accessed 16 Dec 2017

  35. Nagatsuma, T.: Terahertz technologies: present and future. IEICE Electron. Express 8(14), 1127–1142 (2011)

    Article  Google Scholar 

  36. Vitiello, M.S., Scalari, G., Williams, B., De Natale, P.: Quantum cascade lasers: 20 years of challenges. Opt. Express 23(4), 5167–5182 (2015)

    Article  ADS  Google Scholar 

  37. Momeni, O., Afshari, E.: High power terahertz and millimeter-wave oscillator design: a systematic approach. IEEE J. Solid-State Circuits 46(3), 583–597 (2011)

    Article  ADS  Google Scholar 

  38. Homes, C.C., Carr, G.L., Lobo, R.P., LaVeigne, J.D., Tanner, D.B.: Silicon beam splitter for far-infrared and terahertz spectroscopy. Appl. Opt. 46(32), 7884–7888 (2007)

    Article  ADS  Google Scholar 

  39. Ung, B.S.Y., Weng, B., Shepherd, R., Abbott, D., Fumeaux, C.: Inkjet printed conductive polymer-based beam-splitters for terahertz applications. Opt. Mater. Express 3(9), 1242–1249 (2013)

    Article  ADS  Google Scholar 

  40. Berry, C.W., Wang, N., Hashemi, M.R., Unlu, M., Jarrahi, M.: Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun. 4, 1622 (2013)

    Article  ADS  Google Scholar 

  41. Komiyama, S.: Single-photon detectors in the terahertz range. IEEE J. Sel. Top. Quantum Electron. 17(1), 54–66 (2011)

    Article  ADS  Google Scholar 

  42. Sheikh, F., Zarifeh, N., Kaiser, T.: Terahertz band: channel modelling for short-range wireless communications in the spectral windows. IET Microw. Antennas Propag. 10(13), 1435–1444 (2016)

    Article  Google Scholar 

  43. Friis, H.T.: A note on a simple transmission formula. Proc. IRE 34(5), 254–256 (1946)

    Article  Google Scholar 

  44. Jornet, J.M., Akyildiz, I.F.: Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans. Wirel. Commun. 10(10), 3211–3221 (2011)

    Article  Google Scholar 

  45. Sector, I.R.: Recommendation itu-r p. 676–10, attenuation by atmospheric gases. International Telecommunications Union (2013)

  46. Müller-Quade, J., Renner, R.: Composability in quantum cryptography. New J. Phys. 11(8), 085,006 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  47. Leverrier, A., Alléaume, R., Boutros, J., Zémor, G., Grangier, P.: Multidimensional reconciliation for a continuous-variable quantum key distribution. Phys. Rev. A 77(4), 042,325 (2008)

  48. Leverrier, A., Grangier, P.: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 102(18), 180,504 (2009)

  49. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81(6), 062,343 (2010)

  50. Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61372076, 61301171), Shaanxi Key Research and Development Program (Grant No. 2017GY-080), Foundation of Science and Technology on Communication Networks Laboratory (KX172600031) and the 111 Project (No. B08038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhua Zhu.

Appendices

Appendix A: Calculation of information entropy

The information entropy is described by the second-order statistical properties, including variance, covariance, and conditional variance. Firstly, we define the quadrature row vector \(\hat{\mathbf {Y}}=(\hat{Q}_1,\hat{P}_1,\ldots ,\hat{Q}_k,\hat{P}_k)\), which describes the bosonic system of k-mode and its elements satisfy the commutator relation [50]. The correlation matrix (CM) of the Gaussian bosonic state \(\rho \) can be calculated by using the following formulas. The off-diagonal terms of CM are defined by

$$\begin{aligned} V_{ij}=\frac{1}{2}(\langle \hat{Y}_{i}\hat{Y}_{j}+\hat{Y}_{j}\hat{Y}_{i}\rangle )-\langle \hat{Y}_{i}\rangle \langle \hat{Y}_{j}\rangle , \end{aligned}$$
(A.1)

and the diagonal terms of CM are

$$\begin{aligned} V_{ii}=\langle \hat{Y}_{i}^{2}\rangle -\langle \hat{Y}_{i}\rangle ^{2}. \end{aligned}$$
(A.2)

The conditional variance is

$$\begin{aligned} V(\hat{X}|Y)=V(\hat{X})-\frac{|\langle \hat{X}Y\rangle |^{2}}{V(Y)}. \end{aligned}$$
(A.3)

The Shannon entropy is calculated as

$$\begin{aligned} H(\hat{X}_{A})=\frac{1}{2}\log V(\hat{X}_{A}). \end{aligned}$$
(A.4)

The von Neumann entropy of a Gaussian state \(\rho \) containing k-mode can be written as [5]

$$\begin{aligned} S(\rho )=\sum _{i=1}^kg(\nu _{i}), \end{aligned}$$
(A.5)

where

$$\begin{aligned} g(x)=\frac{(x+1)}{2}\log \frac{(x+1)}{2}-\frac{(x-1)}{2}\log \frac{(x-1)}{2}, \end{aligned}$$
(A.6)

where \(\nu _{i}\) corresponds to the symplectic eigenvalues of the ith of the k-mode Gaussian bosonic system and is given by

$$\begin{aligned} \nu =|i\varvec{\Omega \Gamma }|, \end{aligned}$$
(A.7)

where \(\nu \ge 1\), \(\varvec{\Gamma }\) corresponds to the CM of the Gaussian bosonic state \(\rho \) and

$$\begin{aligned} {\varvec{\Omega }}:=\bigoplus _{i=1}^k \begin{bmatrix} 0&\quad 1\\ -1&\quad 0 \end{bmatrix}, \end{aligned}$$
(A.8)

where \(\bigoplus \) is direct sum.

We consider the case of two-mode bosonic Gaussian system to calculate the secure key rate, i.e., \(k=2\), \(\hat{\mathbf {Y}}=(\hat{Q}_{A},\hat{P}_{A},\hat{Q}_{B},\hat{P}_{B})\). Based on Eqs. (5), (A.1), and (A.2), the covariance matrix \({{\varvec{\Gamma }}_{AB}}\) of the state \(\rho _{AB}\) shared by Alice and Bob can be obtained.

$$\begin{aligned} \begin{aligned}\Gamma _{11}&=\Gamma _{22}=V(\hat{Q}_{A})=V,\\\Gamma _{33}&=\Gamma _{44}=V(\hat{Q}_{B})=V(\sqrt{T}\hat{Q}_{B_{0}}+\sqrt{1-T}\hat{E})\\ {}&=TV+(1-T)W, \\ \Gamma _{13}&=\Gamma _{31}=\frac{1}{2}\langle \hat{Q}_{A}\hat{Q}_{B_{0}}+\hat{Q}_{B_{0}}\hat{Q}_{A}\rangle -\langle \hat{Q}_{A}\rangle \langle \hat{Q}_{B_{0}}\rangle \\&=\sqrt{T(V^2-1)}. \end{aligned} \end{aligned}$$
(A.9)

Similarly, other elements of \({{\varvec{\Gamma }}_{AB}}\) can be calculated. \({{\varvec{\Gamma }_{AB}}}\) is given by

$$\begin{aligned} \varvec{\Gamma }_{AB}=\begin{bmatrix}V\mathbf {I}&\quad \sqrt{(T(V^2-1)}\varvec{\sigma }_{z}\\ \sqrt{T(V^2-1)}\varvec{\sigma }_{z}&\quad (TV+(1-T)W)\mathbf {I}\end{bmatrix}, \end{aligned}$$
(A.10)

where \(\mathbf {I}\) is the \(2\times 2\) identity matrix and \(\varvec{\sigma }_{z}={\hbox {diag}}(1,-1)\). To represent concisely, we denote

$$\begin{aligned} \begin{aligned}a&=V,\\b&=TV+(1-T)W,\\c&=\sqrt{T(V^2-1)},\end{aligned} \end{aligned}$$
(A.11)

therefore

$$\begin{aligned} \varvec{\Gamma }_{AB}=\begin{bmatrix}a\mathbf {I}&\quad c\varvec{\sigma }_{z}\\ c\varvec{\sigma }_{z}&\quad b\mathbf {I} \end{bmatrix}. \end{aligned}$$
(A.12)

We first calculate the covariance matrix \(\varvec{\Gamma }_{A_{0}C_{0}B}\)

$$\begin{aligned} \varvec{\Gamma }_{A_{0}C_{0}B}=\begin{bmatrix}a\mathbf {I}&\quad 0&\quad c\varvec{\sigma }_{z}\\ 0&\quad \mathbf {I}&\quad 0\\c\varvec{\sigma }_{z}&\quad 0&\quad b\mathbf {I}\end{bmatrix}. \end{aligned}$$
(A.13)

As shown in Fig. 1, \(\hat{A}_{0}\) and \(\hat{C}_{0}\) are coupled through the beam splitter with \(T_{A}=0.5\). \(\varvec{\Gamma }_{ACB}\) can be calculated as

$$\begin{aligned} \varvec{\Gamma }_{ACB}=\begin{bmatrix}\frac{1}{\sqrt{2}}\mathbf {I}&\quad \frac{1}{\sqrt{2}}\mathbf {I}&\quad 0\\ -\frac{1}{\sqrt{2}}\mathbf {I}&\quad \frac{1}{\sqrt{2}}\mathbf {I}&\quad 0\\0&\quad 0&\quad \mathbf {I}\end{bmatrix}^\mathrm{T}\varvec{\Gamma }_{A_{0}C_{0}B} \begin{bmatrix}\frac{1}{\sqrt{2}}\mathbf {I}&\quad \frac{1}{\sqrt{2}}\mathbf {I}&\quad 0\\ -\frac{1}{\sqrt{2}}\mathbf {I}&\quad \frac{1}{\sqrt{2}}\mathbf {I}&\quad 0\\0&\quad 0&\quad \mathbf {I}\end{bmatrix}. \end{aligned}$$
(A.14)

After Alice performs homodyne detection according to Eq. (7), we can get

$$\begin{aligned} \varvec{\Gamma }_{BC|x}=\begin{bmatrix}b-\frac{c^{2}}{a}&\quad 0&\quad \frac{\sqrt{2}c}{a+1}&\quad 0\\0&\quad b&\quad 0&v\frac{-c}{\sqrt{2}}\\ \frac{\sqrt{2}c}{a+1}&\quad 0&\quad \frac{2a}{a+1}&\quad 0 \\ 0&\quad \frac{-c}{\sqrt{2}}&\quad 0&\quad \frac{a+1}{2}\end{bmatrix}, \end{aligned}$$
(A.15)

\(S(\rho _{AB} )\) is a function of the symplectic eigenvalues \(\nu _{1,2}\) of \(\varvec{\Gamma }_{AB}\) and \(S(\rho _{BC}|x)\) is a function of the symplectic eigenvalues \(\nu _{3,4}\) of \(\varvec{\Gamma }_{BC|x}\). Combined with Eqs. (A.5)–(A.8), (A.11), and (A.15), we can get

$$\begin{aligned} \begin{aligned}\nu _{1,2}^{2}&=\frac{1}{2}\left[ \varDelta _{1}\pm \sqrt{\varDelta _{1}^{2}-4D_{1}}\right] ,\\ \nu _{3,4}^{2}&=\frac{1}{2}\left[ \varDelta _{2}\pm \sqrt{\varDelta _{2}^{2}-4D_{2}}\right] , \end{aligned} \end{aligned}$$
(A.16)

where

$$\begin{aligned} \begin{aligned}\varDelta _{1}&=a^2+b^2-2c^2,\\D_{1}&=(ab-c^2)^2,\\ \varDelta _{2}&=\frac{a+a^2+b^2-2c^2+ab^2-bc^2}{a+1},\\D_{2}&=\frac{(ab-c^2)^2+ab^2-bc^2}{a+1},\end{aligned} \end{aligned}$$
(A.17)

Finally, by Eqs. (11), (12), (A.5), and (A.16), we can get the security key rate R.

Appendix B: The estimation of CM

We consider here a normal model for x and y as

$$\begin{aligned} y=tx+z, \end{aligned}$$
(B.1)

where t is \(\sqrt{T}\) and z is a normal variable with unknown variance \(\sigma ^{2}\). Therefore, \(S_{\varepsilon _\mathrm{PE}}(x:E)\) is a function of t and \(\sigma ^2\). At this point, it is worth considering the dependence of \(S_{\varepsilon _\mathrm{PE}}(x:E)\) on the variables t and \(\sigma ^{2}\):

$$\begin{aligned} \begin{aligned}\frac{\partial S(x:E)}{\partial \sigma ^{2}}|_{t}&>0,\\\frac{\partial S(x:E)}{\partial t}|_{\sigma ^{2}}&<0.\end{aligned} \end{aligned}$$
(B.2)

For maximizing the Holevo information between Eve and Alice’s classical data, we need to estimate \(t_\mathrm{min}\) and \(\sigma ^2_\mathrm{max}\) through the sampling of m couples of correlated variables \((x_{i}, y_{i})_{i=1, \ldots , m}\). We can obtain the estimated value of t and \(\sigma ^{2}\) by the maximum likelihood estimation:

$$\begin{aligned} \begin{aligned} \hat{t}&=\frac{\sum _{i=1}^{m}x_{i}y_{i}}{\sum _{i=1}^{m}x_{i}^2},\\ \hat{\sigma ^{2}}&=\frac{1}{m}\sum _{i=1}^{m}(y_{i}-tx_{i})^{2}, \end{aligned} \end{aligned}$$
(B.3)

where \(\hat{t}\) and \(\hat{\sigma }^{2}\) are independent estimators. By the large number theorem, we can get the following distributions:

$$\begin{aligned} \begin{aligned} \hat{t}&\sim N \left( t,\frac{\sigma ^{2}}{\sum _{i=1}^{m}x_{i}^2}\right) , \\ \frac{m\hat{\sigma }^{2}}{\sigma ^{2}}&\sim \chi ^{2}(m-1), \end{aligned} \end{aligned}$$
(B.4)

where t and \(\sigma ^2\) are the values of the parameters. We expect their estimated values to be as close as possible to the true values, i.e., \( E(\hat{t} )=\sqrt{T}\) and \(E(\hat{\sigma }^2 )=(1-T)W+T\). As we mentioned before, the failure probability of parameters estimation is \(\varepsilon _\mathrm{PE}\) and the error function is defined as

$$\begin{aligned} erf(x)=\frac{2}{\sqrt{\pi }}\int _{0}^xe^{-t^2}{\hbox {d}}t, \end{aligned}$$
(B.5)

Therefore, when the confidence probability \(\delta \) is \(\varepsilon _\mathrm{PE}/2\), we can compute the confidence interval for \(\hat{t}\), \(\hat{\sigma }^2\) as

$$\begin{aligned} \begin{aligned}t&\in \left[ \hat{t}-z_{\delta }\sqrt{\frac{\hat{\sigma }^2}{mV_{A}}}, \hat{t}+z_{\delta }\sqrt{\frac{\hat{\sigma }^2}{mV_{A}}}\right] ,\\ \sigma ^2&\in \left[ \hat{\sigma }^2-z_{\delta }\frac{\sqrt{2}\hat{\sigma }^2}{\sqrt{m}} ,\hat{\sigma }^2+z_{\delta }\frac{\sqrt{2}\hat{\sigma }^2}{\sqrt{m}}\right] , \end{aligned} \end{aligned}$$
(B.6)

where \(z_{\delta }\) satisfies \(1-erf(\frac{z_{\delta }}{\sqrt{2}})/2=\delta \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhu, C., Chen, N. et al. Practical aspects of terahertz wireless quantum key distribution in indoor environments. Quantum Inf Process 17, 304 (2018). https://doi.org/10.1007/s11128-018-2068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2068-6

Keywords

Navigation