Abstract
Quantum memories and optical transistors are elementary building blocks for the implementation of many devices for quantum computers and quantum communication. The realization of experiments that can perform both capabilities in the same setup can open an avenue of possibilities in the development of such practical quantum technologies. We theoretically investigate the feasibility of implementing a quantum memory and an optical transistor in the same setup using a combination of electromagnetically induced transparency and cavity quantum electrodynamics (cavity-EIT) for single- and two-sided cavity configurations. This was accomplished by considering a single three-level atom in \(\Lambda \) configuration coupled to a single electromagnetic mode of the cavity and a suitable temporal shape for the EIT control field. An optical transistor in cavity-EIT can be realized in a symmetric cavity with two output channels while a high efficient quantum memory must be performed in a single-sided one. From the master equation and input–output formalisms for the intracavity and outside fields, respectively, we obtain the upper bound of \(50\%\) for the memory efficiency with perfect transistor action in two-sided cavities and values close to \(100\%\) for the efficiency with a limited transistor effect for the single-sided setup in the high cooperativity regime. Thus, we showed that a dual device, which operates as a quantum memory and an optical transistor in the same setup of cavity-EIT, can be accomplished with some limitation in one of those capabilities.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
The full scattering of light by the atom observed for \(g = 0.8\kappa \) can be obtained from the stationary solutions given by Eqs. (9) and (10), by considering \(\gamma = \kappa _A\). Once in the one-sided cavity configuration we have \(\kappa _A = \kappa \), we found \(a_\mathrm{out} = 0\). It means that the outside field is zero and \(\sigma ^s = a_\mathrm{in}\). Due to the presence of the atom inside the cavity, we can derive an effective field decay rate given by \(\gamma = g^2/\Gamma _{31}\) [47, 48]. In our simulations, we assume \(\Gamma _{31} = 0.6\kappa \), which provides \(g\sim 0.8\kappa \), showing that the result obtained from the stationary solution is in complete agreement with the numerical result presented in Fig. 4c.
References
Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50, 36 (1997)
Julsgaard, B., Sherson, J., Cirac, J.I., Fiurasek, J., Polzik, E.S.: Experimental demonstration of quantum memory for light. Nature 432, 25 (2004)
Fleischhauer, M., Lukin, M.D.: Quantum memory for photons: dark-state polaritons. Phys. Rev. A 65, 022314 (2002)
Marangos, J.P.: Electromagnetically induced transparency. J. Mod. Opt. 45, 471 (2009)
Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)
Mücke, M., Figueroa, E., Bochmann, J., Hahn, C., Murr, K., Ritter, S., Villas-Boas, C.J., Rempe, G.: Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755 (2010)
Vanier, J.: Atomic clocks based on coherent population trapping: a review. Appl. Phys. B 81, 421 (2005)
Simon, C., Afzelius, M., Appel, J., Boyer de la Giroday, A., Dewhurst, S.J., Gisin, N., Hu, C.Y., Jelezko, F., Kroll, S., Muller, J.H., Nunn, J., Polzik, E., Rarity, J., de Riedmatten, H., Rosenfeld, W., Shields, A.J., Skold, N., Stevenson, R.M., Thew, R., Walmsley, I., Weber, M., Weinfurter, H., Wrachtrup, J., Young, R.J.: Quantum memories. Eur. Phys. J. D 58, 1 (2010)
Ian, H., Liu, Y.-X., Nori, F.: Tunable electromagnetically induced transparency and absorption with dressed superconducting qubit. Phys. Rev. A 81, 063823 (2010)
Liu, Q.-C., Li, T.-F., Luo, X.-Q., Zhao, H., Xiong, W., Zhang, Y.-S., Chen, Z., Liu, J.S., Chen, W., Nori, F., Tsai, J.S., You, J.Q.: Method for identifying electromagnetically induced transparency in a tunable circuit quantum electrodynamics system. Phys. Rev. A 93, 053838 (2016)
Sun, H.-C., Liu, Y.-X., Ian, H., You, J.Q., Il’ichev, E., Nori, F.: Electromagnetically induced transparency and Autler–Townes splitting in superconducting flux quantum circuits. Phys. Rev. A 89, 063822 (2014)
Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)
Wang, H., Gu, X., Liu, Y.-X., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 90, 023817 (2014)
Jing, H., Özdemir, Ş.K., Geng, Z., Zhang, J., Lü, X.-Y., Peng, B., Yang, L., Nori, F.: Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep. 5, 9663 (2015)
Peng, B., Özdemir, Ş.K., Chen, W., Nori, F., Yang, L.: What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 5082 (2014)
Anisimov, P.M., Dowling, J.P., Sanders, B.C.: Objectively discerning Autler–Townes splitting from electromagnetically induced transparency. Phys. Rev. Lett. 107, 163604 (2011)
Haroche, S.: Cavity quantum optics. Phys. World 3, 33 (1991)
Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photon. 3, 706 (2009)
Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)
Bussières, F., Sangouard, N., Afzelius, M., de Riedmatten, H., Simon, C., Tittel, W.: Quantum repeaters: the role of imperfect local operations in quantum communication. J. Mod. Opt. 60, 1519 (2013)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Ritter, S., Nülleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Mücke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature 484, 195 (2012)
Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1, 165 (2007)
Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)
Politi, A., Matthews, J.C.F., Brien, J.L.Ó.: Shors quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009)
Abraham, E., Seaton, C.T., Smith, S.D.: The optical computer. Sci. Am. 248, 63 (1983)
Bate, R.T.: The quantum effect device: tomorrow’s transistor? Sci. Am. 258, 78 (1988)
Gibbs, H.M.: Optical Bistability: Controlling Light with Light. Academic Press Inc., Cambridge (1985)
Oksanen, J., Tulkki, J.: Coherent optical logic by laser amplifiers with feedback. J. Lightwave Technol. 24, 4918 (2006)
Hwang, J., Pototschnig, M., Lettow, R., Zumofen, G., Renn, A., Götzinger, S., Sandoghdar, V.: A single-molecule optical transistor. Nature 460, 76 (2009)
Parkins, S.: Single-atom transistor for light. Nature 465, 699 (2010)
Albert, M., Dantan, A., Drewsen, M.: Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals. Nat. Photon. 5, 633 (2011)
Fushman, I., Englund, D., Faraon, A., Stoltz, N., Petroff, P., Vučković, J.: Controlled phase shifts with a single quantum dot. Science 320, 769 (2008)
Mabuchi, H.: Cavity-QED models of switches for attojoule-scale nanophotonic logic. Phys. Rev. A 80, 045802 (2009)
Chen, W., Beck, K.M., Bücker, R., Gullans, M., Lukin, M.D., Tanji-Suzuki, H., Vuletić, V.: All-optical switch and transistor gated by one stored photon. Science 341, 768 (2009)
Tiarks, D., Baur, S., Schneider, K., Dürr, S., Rempe, G.: Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014)
Collett, M.J., Gardiner, C.W.: Squeezing of intracavity and traveling-wave light fields produced in parametric amplification. Phys. Rev. A 30, 1386 (1984)
Collett, M.J., Gardiner, C.W.: Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761 (1985)
Tan, S.M.: A computational toolbox for quantum and atomic optics. J. Opt. B 1, 424 (1999)
Souza, J.A., Figueroa, E., Chibani, H., Villas-Boas, C.J., Rempe, G.: Coherent control of quantum fluctuations using cavity electromagnetically induced transparency. Phys. Rev. Lett. 111, 113602 (2013)
Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015)
Dilley, J., Nisbet-Jones, P., Shore, B.W., Kuhn, A.: Single-photon absorption in coupled atom-cavity systems. Phys. Rev. A 85, 023834 (2012)
Fleischhauer, M., Yelin, S.F., Lukin, M.D.: Storing single-photon quantum states in collective atomic excitations, How to trap photons? Opt. Commun. 179, 395 (2000)
Specht, H.P., Nülleke, C., Reiserer, A., Uphoff, M., Figueroa, E., Ritter, S., Rempe, G.: A single-atom quantum memory. Nature 473, 190 (2011)
Yamamoto, Y., Imoto, N.: Internal and external field fluctuations of a laser oscillator: part I-quantum mechanical Langevin treatment. IEEE J. Quantum Electron. 22, 2032 (1986)
Borges, H.S., Villas-Boas, C.J.: Quantum phase gate based on electromagnetically induced transparency in optical cavities. Phys. Rev. A 94, 052337 (2016)
Werlang, T., Guzman, R., Prado, F.O., Villas-Boas, C.J.: Generation of decoherence-free displaced squeezed states of radiation fields and a squeezed reservoir for atoms in cavity QED. Phys. Rev. A 78, 033820 (2008)
Prado, F.O., de Almeida, N.G., Duzzioni, E.I., Moussa, M.H.Y., Villas-Boas, C.J.: Decoherence-free evolution of time-dependent superposition states of two-level systems and thermal effects. Phys. Rev. A 84, 012112 (2011)
Acknowledgements
The authors gratefully acknowledge support by the Brazilian founding agencies São Paulo Research Foundation (FAPESP) Grants #2012/00176-9, #2013/04162-5, #2014/12740-1 and #2015/21229-1, National Council of Scientific and Technological Development (CNPq) Grant #308860/2015-2 and the Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ) Grant No. 465469/2014-0. We also thank the fruitful discussions with Stephan Ritter.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Oliveira, R.R., Borges, H.S., Souza, J.A. et al. A multitasking device based on electromagnetically induced transparency in optical cavities. Quantum Inf Process 17, 311 (2018). https://doi.org/10.1007/s11128-018-2069-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2069-5