Skip to main content
Log in

A multitasking device based on electromagnetically induced transparency in optical cavities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum memories and optical transistors are elementary building blocks for the implementation of many devices for quantum computers and quantum communication. The realization of experiments that can perform both capabilities in the same setup can open an avenue of possibilities in the development of such practical quantum technologies. We theoretically investigate the feasibility of implementing a quantum memory and an optical transistor in the same setup using a combination of electromagnetically induced transparency and cavity quantum electrodynamics (cavity-EIT) for single- and two-sided cavity configurations. This was accomplished by considering a single three-level atom in \(\Lambda \) configuration coupled to a single electromagnetic mode of the cavity and a suitable temporal shape for the EIT control field. An optical transistor in cavity-EIT can be realized in a symmetric cavity with two output channels while a high efficient quantum memory must be performed in a single-sided one. From the master equation and input–output formalisms for the intracavity and outside fields, respectively, we obtain the upper bound of \(50\%\) for the memory efficiency with perfect transistor action in two-sided cavities and values close to \(100\%\) for the efficiency with a limited transistor effect for the single-sided setup in the high cooperativity regime. Thus, we showed that a dual device, which operates as a quantum memory and an optical transistor in the same setup of cavity-EIT, can be accomplished with some limitation in one of those capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The full scattering of light by the atom observed for \(g = 0.8\kappa \) can be obtained from the stationary solutions given by Eqs. (9) and (10), by considering \(\gamma = \kappa _A\). Once in the one-sided cavity configuration we have \(\kappa _A = \kappa \), we found \(a_\mathrm{out} = 0\). It means that the outside field is zero and \(\sigma ^s = a_\mathrm{in}\). Due to the presence of the atom inside the cavity, we can derive an effective field decay rate given by \(\gamma = g^2/\Gamma _{31}\) [47, 48]. In our simulations, we assume \(\Gamma _{31} = 0.6\kappa \), which provides \(g\sim 0.8\kappa \), showing that the result obtained from the stationary solution is in complete agreement with the numerical result presented in Fig. 4c.

References

  1. Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  2. Julsgaard, B., Sherson, J., Cirac, J.I., Fiurasek, J., Polzik, E.S.: Experimental demonstration of quantum memory for light. Nature 432, 25 (2004)

    Article  Google Scholar 

  3. Fleischhauer, M., Lukin, M.D.: Quantum memory for photons: dark-state polaritons. Phys. Rev. A 65, 022314 (2002)

    Article  ADS  Google Scholar 

  4. Marangos, J.P.: Electromagnetically induced transparency. J. Mod. Opt. 45, 471 (2009)

    Article  ADS  Google Scholar 

  5. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  6. Mücke, M., Figueroa, E., Bochmann, J., Hahn, C., Murr, K., Ritter, S., Villas-Boas, C.J., Rempe, G.: Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755 (2010)

    Article  ADS  Google Scholar 

  7. Vanier, J.: Atomic clocks based on coherent population trapping: a review. Appl. Phys. B 81, 421 (2005)

    Article  ADS  Google Scholar 

  8. Simon, C., Afzelius, M., Appel, J., Boyer de la Giroday, A., Dewhurst, S.J., Gisin, N., Hu, C.Y., Jelezko, F., Kroll, S., Muller, J.H., Nunn, J., Polzik, E., Rarity, J., de Riedmatten, H., Rosenfeld, W., Shields, A.J., Skold, N., Stevenson, R.M., Thew, R., Walmsley, I., Weber, M., Weinfurter, H., Wrachtrup, J., Young, R.J.: Quantum memories. Eur. Phys. J. D 58, 1 (2010)

    Article  ADS  Google Scholar 

  9. Ian, H., Liu, Y.-X., Nori, F.: Tunable electromagnetically induced transparency and absorption with dressed superconducting qubit. Phys. Rev. A 81, 063823 (2010)

    Article  ADS  Google Scholar 

  10. Liu, Q.-C., Li, T.-F., Luo, X.-Q., Zhao, H., Xiong, W., Zhang, Y.-S., Chen, Z., Liu, J.S., Chen, W., Nori, F., Tsai, J.S., You, J.Q.: Method for identifying electromagnetically induced transparency in a tunable circuit quantum electrodynamics system. Phys. Rev. A 93, 053838 (2016)

    Article  ADS  Google Scholar 

  11. Sun, H.-C., Liu, Y.-X., Ian, H., You, J.Q., Il’ichev, E., Nori, F.: Electromagnetically induced transparency and Autler–Townes splitting in superconducting flux quantum circuits. Phys. Rev. A 89, 063822 (2014)

    Article  ADS  Google Scholar 

  12. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  13. Wang, H., Gu, X., Liu, Y.-X., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 90, 023817 (2014)

    Article  ADS  Google Scholar 

  14. Jing, H., Özdemir, Ş.K., Geng, Z., Zhang, J., Lü, X.-Y., Peng, B., Yang, L., Nori, F.: Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep. 5, 9663 (2015)

    Article  Google Scholar 

  15. Peng, B., Özdemir, Ş.K., Chen, W., Nori, F., Yang, L.: What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 5082 (2014)

    Article  ADS  Google Scholar 

  16. Anisimov, P.M., Dowling, J.P., Sanders, B.C.: Objectively discerning Autler–Townes splitting from electromagnetically induced transparency. Phys. Rev. Lett. 107, 163604 (2011)

    Article  ADS  Google Scholar 

  17. Haroche, S.: Cavity quantum optics. Phys. World 3, 33 (1991)

    Article  Google Scholar 

  18. Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photon. 3, 706 (2009)

    Article  ADS  Google Scholar 

  19. Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  20. Bussières, F., Sangouard, N., Afzelius, M., de Riedmatten, H., Simon, C., Tittel, W.: Quantum repeaters: the role of imperfect local operations in quantum communication. J. Mod. Opt. 60, 1519 (2013)

    Article  ADS  Google Scholar 

  21. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  22. Ritter, S., Nülleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Mücke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature 484, 195 (2012)

    Article  ADS  Google Scholar 

  23. Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1, 165 (2007)

    Article  ADS  Google Scholar 

  24. Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  25. Politi, A., Matthews, J.C.F., Brien, J.L.Ó.: Shors quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Abraham, E., Seaton, C.T., Smith, S.D.: The optical computer. Sci. Am. 248, 63 (1983)

    Article  Google Scholar 

  27. Bate, R.T.: The quantum effect device: tomorrow’s transistor? Sci. Am. 258, 78 (1988)

    Article  Google Scholar 

  28. Gibbs, H.M.: Optical Bistability: Controlling Light with Light. Academic Press Inc., Cambridge (1985)

    Google Scholar 

  29. Oksanen, J., Tulkki, J.: Coherent optical logic by laser amplifiers with feedback. J. Lightwave Technol. 24, 4918 (2006)

    Article  ADS  Google Scholar 

  30. Hwang, J., Pototschnig, M., Lettow, R., Zumofen, G., Renn, A., Götzinger, S., Sandoghdar, V.: A single-molecule optical transistor. Nature 460, 76 (2009)

    Article  ADS  Google Scholar 

  31. Parkins, S.: Single-atom transistor for light. Nature 465, 699 (2010)

    Article  ADS  Google Scholar 

  32. Albert, M., Dantan, A., Drewsen, M.: Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals. Nat. Photon. 5, 633 (2011)

    Article  ADS  Google Scholar 

  33. Fushman, I., Englund, D., Faraon, A., Stoltz, N., Petroff, P., Vučković, J.: Controlled phase shifts with a single quantum dot. Science 320, 769 (2008)

    Article  ADS  Google Scholar 

  34. Mabuchi, H.: Cavity-QED models of switches for attojoule-scale nanophotonic logic. Phys. Rev. A 80, 045802 (2009)

    Article  ADS  Google Scholar 

  35. Chen, W., Beck, K.M., Bücker, R., Gullans, M., Lukin, M.D., Tanji-Suzuki, H., Vuletić, V.: All-optical switch and transistor gated by one stored photon. Science 341, 768 (2009)

    Article  ADS  Google Scholar 

  36. Tiarks, D., Baur, S., Schneider, K., Dürr, S., Rempe, G.: Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014)

    Article  ADS  Google Scholar 

  37. Collett, M.J., Gardiner, C.W.: Squeezing of intracavity and traveling-wave light fields produced in parametric amplification. Phys. Rev. A 30, 1386 (1984)

    Article  ADS  Google Scholar 

  38. Collett, M.J., Gardiner, C.W.: Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  39. Tan, S.M.: A computational toolbox for quantum and atomic optics. J. Opt. B 1, 424 (1999)

    Article  ADS  Google Scholar 

  40. Souza, J.A., Figueroa, E., Chibani, H., Villas-Boas, C.J., Rempe, G.: Coherent control of quantum fluctuations using cavity electromagnetically induced transparency. Phys. Rev. Lett. 111, 113602 (2013)

    Article  ADS  Google Scholar 

  41. Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015)

    Article  ADS  Google Scholar 

  42. Dilley, J., Nisbet-Jones, P., Shore, B.W., Kuhn, A.: Single-photon absorption in coupled atom-cavity systems. Phys. Rev. A 85, 023834 (2012)

    Article  ADS  Google Scholar 

  43. Fleischhauer, M., Yelin, S.F., Lukin, M.D.: Storing single-photon quantum states in collective atomic excitations, How to trap photons? Opt. Commun. 179, 395 (2000)

    Article  ADS  Google Scholar 

  44. Specht, H.P., Nülleke, C., Reiserer, A., Uphoff, M., Figueroa, E., Ritter, S., Rempe, G.: A single-atom quantum memory. Nature 473, 190 (2011)

    Article  ADS  Google Scholar 

  45. Yamamoto, Y., Imoto, N.: Internal and external field fluctuations of a laser oscillator: part I-quantum mechanical Langevin treatment. IEEE J. Quantum Electron. 22, 2032 (1986)

    Article  ADS  Google Scholar 

  46. Borges, H.S., Villas-Boas, C.J.: Quantum phase gate based on electromagnetically induced transparency in optical cavities. Phys. Rev. A 94, 052337 (2016)

    Article  ADS  Google Scholar 

  47. Werlang, T., Guzman, R., Prado, F.O., Villas-Boas, C.J.: Generation of decoherence-free displaced squeezed states of radiation fields and a squeezed reservoir for atoms in cavity QED. Phys. Rev. A 78, 033820 (2008)

    Article  ADS  Google Scholar 

  48. Prado, F.O., de Almeida, N.G., Duzzioni, E.I., Moussa, M.H.Y., Villas-Boas, C.J.: Decoherence-free evolution of time-dependent superposition states of two-level systems and thermal effects. Phys. Rev. A 84, 012112 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support by the Brazilian founding agencies São Paulo Research Foundation (FAPESP) Grants #2012/00176-9, #2013/04162-5, #2014/12740-1 and #2015/21229-1, National Council of Scientific and Technological Development (CNPq) Grant #308860/2015-2 and the Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ) Grant No. 465469/2014-0. We also thank the fruitful discussions with Stephan Ritter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Borges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, R.R., Borges, H.S., Souza, J.A. et al. A multitasking device based on electromagnetically induced transparency in optical cavities. Quantum Inf Process 17, 311 (2018). https://doi.org/10.1007/s11128-018-2069-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2069-5

Keywords

Navigation