Skip to main content

Advertisement

Log in

Uniform finite-dimensional approximation of basic capacities of energy-constrained channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider energy-constrained infinite-dimensional quantum channels from a given system (satisfying a certain condition) to any other systems. We show that dealing with basic capacities of these channels we may assume (accepting arbitrarily small error \(\varepsilon \)) that all channels have the same finite-dimensional input space—the subspace corresponding to the \(m(\varepsilon )\) minimal eigenvalues of the input Hamiltonian. We also show that for the class of energy-limited channels (mapping energy-bounded states to energy-bounded states) the above result is valid with substantially smaller dimension \(m(\varepsilon )\). The uniform finite-dimensional approximation allows us to prove the uniform continuity of the basic capacities on the set of all quantum channels with respect to the strong (pointwise) convergence topology. For all the capacities, we obtain continuity bounds depending only on the input energy bound and the energy-constrained diamond-norm distance between quantum channels (generating the strong convergence on the set of quantum channels).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. This assumption holds for quantum systems used in applications, in particular, for a system of quantum oscillators.

  2. Here and in what follows, \(\mathrm {Tr}_X\) means \(\mathrm {Tr}_{\mathcal {H}_X}\).

  3. Slightly different definition of energy-constrained diamond norms was used in [10].

  4. The support of a positive operator is the orthogonal complement to its kernel.

  5. The value of \(\,\mathrm {Tr}H_A\rho \) (finite or infinite) is defined as \(\,\sup _n \mathrm {Tr}P_n H_A\rho \), where \(P_n\) is the spectral projector of \(H_A\) corresponding to the interval [0, n].

  6. This method is widely used in finite dimensions for proving uniform continuity of functions on the set of quantum states [19, 21].

  7. This means that \(\,|f(p\rho +(1-p)\sigma )-p f(\rho )-(1-p)f(\sigma )|\le r(p)=o(1)\,\) as \(\,p\rightarrow 0^{+}\).

  8. Similar splitting is used in the proof of Lemma 7 in [5].

  9. The concavity of the function \(\root 4 \of {x}\,\bar{F}_{H_A}(\sqrt{x})\) follows from the concavity and nonnegativity the function \(\,\bar{F}_{H_A}(x)\). This can be shown by calculation of the second derivative.

  10. There are many papers devoted to analysis of these capacities for Gaussian channels, see [25,26,27] and the surveys in [3, 4, 28].

  11. \(\,g(x)\doteq (1+x)h_2\left( \frac{x}{1+x}\right) =(x+1)\log (x+1)-x\log x\).

  12. The capacities \(C_*({\Phi }, H_{A},E)\), \(C_*=C_{\chi }, C, Q, C_{\mathrm {p}}\), take values in \([0,F_{H_A}(E)]\); the capacity \(C_{\mathrm {ea}}({\Phi }, H_{A},E)\) takes values in \([0,2F_{H_A}(E)]\).

  13. There is a hope that one can obtain more accurate estimates by combining the methods used in [19] and [20].

  14. \(E^A_m\) is the mth eigenvalue of \(H_A\) (taking the multiplicity into account).

  15. The proof of this lemma differs from the proof of Lemma 7 in [5] (containing similar continuity bound for the conditional entropy) by the way of splitting of \(\{1,2,\ldots ,n\}\) into the sets \(N_1\) and \(N_2\). This makes the resulting continuity bound more accurate in the case of logarithmic growth of \(F_{H_B}\) (in particular, if B is a multi-mode quantum oscillator).

  16. \(\Vert \cdot \Vert _{\diamond }^E\) is the energy-constrained diamond norm defined in (6).

References

  1. Holevo, A.S.: Quantum Systems, Channels, Information. A Mathematical Introduction. DeGruyter, Berlin (2012)

    Book  Google Scholar 

  2. Holevo, A.S.: Classical capacities of quantum channels with constrained inputs. Probab. Theory Appl. 48(2), 359–374 (2003)

    Google Scholar 

  3. Wilde, M.M., Qi,H.: Energy-constrained private and quantum capacities of quantum channels. arXiv:1609.01997

  4. Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  5. Winter, A.: Energy-Constrained Diamond Norm with Applications to the Uniform Continuity of Continuous Variable Channel Capacities. arXiv:1712.10267 (2017)

  6. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  7. Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In: Proceedings of the 30th STOC, pp. 20–30. ACM Press (1998)

  8. Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  9. Shirokov, M.E.: Energy-constrained diamond norms and their use in quantum information theory. Probl. Inf. Transm. 54(1), 20–33 (2018)

    Article  Google Scholar 

  10. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)

    Article  ADS  Google Scholar 

  11. Lindblad, G.: Expectation and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39(2), 111–119 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  12. Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–250 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lindblad, G.: Entropy, information and quantum measurements. Commun. Math. Phys. 33, 305–322 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kuznetsova, A.A.: Quantum conditional entropy for infinite-dimensional systems. Theory Probab. Appl. 55(4), 709–717 (2011)

    Article  MathSciNet  Google Scholar 

  15. Shirokov, M.E.: Measures of correlations in infinite-dimensional quantum systems. Sbornik: Mathematics 207(5), 724–768 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Devetak, I., Yard, J.: The operational meaning of quantum conditional information. Phys. Rev. Lett. 100, 230501 (2008)

    Article  ADS  Google Scholar 

  17. Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum mechanical entropy. J. Math. Phys. 14, 1938 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  18. Shirokov, M.E.: Tight uniform continuity bounds for the quantum conditional mutual information, for the Holevo quantity and for capacities of quantum channels. J. Math. Phys. 58, 10, 102202 (2017)

    Article  MathSciNet  Google Scholar 

  19. Winter, A.: Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys. 347(1), 291–313 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Shirokov, M.E.: Adaptation of the Alicki–Fannes–Winter method for the set of states with bounded energy and its use. Rep. Math. Phys. 81(1), 81–104 (2018)

    Article  MathSciNet  Google Scholar 

  21. Alicki, R., Fannes, M.: Continuity of quantum conditional information. J. Phys. A Math. Gen. 37(5), L55–L57 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  22. Leung, D., Smith, G.: Continuity of quantum channel capacities. Commun. Math. Phys. 292, 201–215 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Giovannetti, V., Holevo, A.S., Garcia-Patron, R.: A solution of Gaussian optimizer conjecture for quantum channels. Commun. Math. Phys. 334(3), 1553–1571 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Holevo, A.S., Shirokov, M.E.: On classical capacities of infinite-dimensional quantum channels. Probl. Inf. Transm. 49(1), 15–31 (2013)

    Article  MathSciNet  Google Scholar 

  25. Holevo, A.S., Werner, R.F.: Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63(3), 032312 (2001)

    Article  ADS  Google Scholar 

  26. Wolf, M.M., Perez-Garcia, D., Giedke, G.: Quantum capacities of bosonic channels. Phys. Rev. Lett. 98(13), 130501 (2007)

    Article  ADS  Google Scholar 

  27. Rosati,M., Mari,A., Giovannetti,V.: Narrow Bounds for the Quantum Capacity of Thermal Attenuators, arXiv:1801.04731

  28. Sharma, K., Wilde, M.M., Adhikari, S., Takeoka, M.: Bounding the energy-constrained quantum and private capacities of phase-insensitive bosonic Gaussian channels. New J. Phys. 20, 063025 (2018)

    Article  ADS  Google Scholar 

  29. Kretschmann, D., Schlingemann, D., Werner, R.F.: A continuity theorem for Stinespring’s dilation. J. Funct. Anal. 255(8), 1889–1904 (2008)

    Article  MathSciNet  Google Scholar 

  30. Shirokov, M.E.: Continuity bounds for information characteristics of quantum channels depending on input dimension. arXiv:1604.00568

Download references

Acknowledgements

I am grateful to the participants of the workshop “Recent advances in continuous variable quantum information theory”, Barcelona, April 2016, for the stimulating discussion. I am grateful to A. Winter for sending me a preliminary version of the paper [5] used in this work. I am also grateful to A.S. Holevo and G.G. Amosov for useful comments and to M.M. Wilde for valuable communication concerning capacities of infinite-dimensional channels with energy constraints. Special thanks to Yu.V. Andreev and L.V. Kuzmin for the help with MATLAB. Many thanks are due to unknown reviewers for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Shirokov.

Appendix

Appendix

The following lemma is the QCMI version of Lemma 7 in [5].Footnote 15

Lemma 7

Let \(\,{\Phi }\) and \(\,{\Psi }\) be quantum channels from A to B satisfying condition (44), CD any systems, \(n\in {\mathbb {N}}\) and \(\,\rho \) a state in \(\,S(\mathcal {H}^{\otimes n}_{A}\otimes \mathcal {H}_{CD})\) such that \(\,\sum _{k=1}^n\mathrm {Tr}H_A\rho _{A_k}\le nE<+\infty \). If \(\,\frac{1}{2}\Vert {\Phi }-{\Psi }\Vert _{\diamond }^E\le \varepsilon \) thenFootnote 16

$$\begin{aligned}&(1/n)\left| I(B^n:D|C)_{{\Phi }^{\otimes n}\otimes \mathrm {Id}_{CD}(\rho )}-I(B^n:D|C)_{{\Psi }^{\otimes n}\otimes \mathrm {Id}_{CD}(\rho )}\right| \nonumber \\&\quad \le \displaystyle (4t+2r(t,\varepsilon ))\widehat{F}_{H_{B}}\left( \frac{E_p}{t}\right) +2g\left( r(t,\varepsilon )\right) +4h_2(t)+ \frac{2}{p}\widehat{F}_{H_{B}}(E_p) \end{aligned}$$
(52)

for any \(\,p\ge 1\) and \(\,t\in (0,\frac{1}{2}]\), where \(E_p=\alpha p E+E_c\), \(r(t,\varepsilon )=\frac{\varepsilon +t/2}{1-t}\), and \(\,\widehat{F}_{H_B}\) is any function with properties (45), (46) and (47).

If \(\,\mathrm {Tr}H_A\rho _{A_k}\le E\,\) for all \(\,k=\overline{1,n}\,\) then (52) holds with \(p=1\) without the last term in the right-hand side.

Proof

Denote by \({\Delta }^n({\Phi },{\Psi },\rho )\) the left-hand side of (52). By the proof of Proposition 12B in [18] (based on the Leung–Smith telescopic method), we have

$$\begin{aligned} n{\Delta }^n({\Phi },{\Psi },\rho )\le \sum _{k=1}^{n}|I(B_k:D|X)_{\sigma _k}-I(B_k:D|X)_{\sigma _{k-1}}|, \end{aligned}$$

where \(X=B_1\ldots B_{k-1}B_{k+1}\ldots B_nC\) and \(\sigma _k={\Phi }^{\otimes k}\otimes {\Psi }^{\otimes (n-k)}\otimes \mathrm {Id}_{CD}(\rho )\), \(k=0,1,\ldots ,n\). The proof of Proposition 12B in [18] also implies that

$$\begin{aligned} \Vert \sigma _k-\sigma _{k-1}\Vert _1\le \sup \left\{ \Vert ({\Phi }-{\Psi })\otimes \mathrm {Id}_R(\omega )\Vert _1\,|\;\omega _{A}=\rho _{A_k}\right\} \le \Vert {\Phi }-{\Psi }\Vert _{\diamond }^{x_k}, \end{aligned}$$
(53)

where \(x_k=\mathrm {Tr}H_A\rho _{A_k}\).

Since \([\sigma _k]_{B_k}={\Phi }(\rho _{A_k})\) and \([\sigma _{k-1}]_{B_k}={\Psi }(\rho _{A_k})\), we have

$$\begin{aligned} \mathrm {Tr}H_B[\sigma _k]_{B_k}, \mathrm {Tr}H_B[\sigma _{k-1}]_{B_k}\le \alpha x_k + E_c. \end{aligned}$$
(54)

Let \(N_1\) be the set of indexes k for which \(x_k\le p E\) and \(N_2=\{1,..,n\}\setminus N_1\). Thus,

$$\begin{aligned} n{\Delta }^n({\Phi },{\Psi },\rho )\le \sum _{k\in N_1}D_k+\sum _{k\in N_2}D_k,\quad D_k=|I(B_k:D|X)_{\sigma _k}-I(B_k:D|X)_{\sigma _{k-1}}|. \end{aligned}$$

For each \(k\in N_1\) Proposition 5 in [18] along with (53) and (54) implies

for any \(\,t_k\in (0,\frac{1}{2\varepsilon _k}]\), where \(\varepsilon _k=\frac{1}{2}\Vert {\Phi }-{\Psi }\Vert ^{x_k}_{\diamond }\). By choosing free parameters \(t_k\) such that \(\,\varepsilon _kt_k=t\,\) for all \(k\in N_1\) we obtain

where \(n_1=\sharp (N_1)\) and \(\bar{\varepsilon }_1\doteq n_1^{-1}\sum _{k\in N_1}\varepsilon _k\). The last inequality follows from monotonicity of the function \(\widehat{F}_{H_B}\) (since \(x_k\le pE\) for all \(k\in N_1\)) and concavity of the function g(x).

By using monotonicity and concavity of the function \(E\mapsto \Vert {\Phi }\Vert ^E_{\diamond }\) (proved in [5]) it is easy to show that \(\bar{\varepsilon }_1\le \frac{1}{2}\Vert {\Phi }-{\Psi }\Vert _{\diamond }^E\le \varepsilon \). So, by monotonicity of g(x) we have

$$\begin{aligned} n^{-1}\sum _{k\in N_1}D_k\le \left( 4t+\frac{2\varepsilon +t}{1-t}\right) \widehat{F}_{H_B}\left( \frac{\alpha pE +E_c}{t}\right) +2g\left( \frac{\varepsilon +t/2}{1-t}\right) +4h_2(t). \end{aligned}$$

For each \(k\in N_2\) upper bound (18), the nonnegativity of QCMI and inequalities (54) imply that

$$\begin{aligned} D_k\le 2\max \{H([\sigma _k]_{B_k}), H([\sigma _{k-1}]_{B_k})\}\le 2\widehat{F}_{H_B}(\alpha x_k + E_c). \end{aligned}$$

So, by concavity of \(\widehat{F}_{H_B}\) we have

$$\begin{aligned} \sum _{k\in N_2}D_k\le 2\sum _{k\in N_2}\widehat{F}_{H_B}(\alpha x_k + E_c)\le 2n_2\widehat{F}_{H_B}(\alpha X_2 + E_c), \end{aligned}$$

where \(n_2=\sharp (N_2)\) and \(X_2=n_2^{-1}\sum _{k\in N_2}x_2\). Since \(\sum _{k\in N_2}x_k\le nE\) and \(x_k> pE\) for all \(k\in N_2\), we have \(X_2\le nE/n_2\) and \(n_2/n\le 1/p\). By using monotonicity of \(\widehat{F}_{H_B}\) and applying Lemma 1 to the concave nonnegative function \(x\mapsto \widehat{F}_{H_B}(\alpha x + E_c)\) on \(\mathbb {R}_+\) we obtain

$$\begin{aligned} n^{-1}\sum _{k\in N_2}D_k\le 2(n_2/n)\widehat{F}_{H_B}(\alpha (n/n_2) E + E_c)\le (2/p)\widehat{F}_{H_B}(\alpha p E + E_c). \end{aligned}$$

This and the above estimate for \(n^{-1}\sum _{k\in N_1}D_k\) imply (52).

The last assertion of the lemma follows from the above arguments with \(p=1\), since in this case the set \(N_2\) is empty. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokov, M.E. Uniform finite-dimensional approximation of basic capacities of energy-constrained channels. Quantum Inf Process 17, 322 (2018). https://doi.org/10.1007/s11128-018-2070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2070-z

Keywords