Abstract
We seek to study the problem of estimating the atoms-field coupling constant in Tavis–Cummings model for interaction between two atoms and an electromagnetic field by means of local estimation theory. We calculate the quantum Fisher information (QFI) for the most general pure probe state that undergoes evolution generated by the Hamiltonian of the Tavis–Cummings model; then, proper probe states which maximize the QFI are determined. Furthermore, we consider subspaces separately and show that QFI for atomic subspace (contains both qubits) and cavity field subspace can reach the maximum value of QFI in the whole space by choosing proper initial state. Finally, the optimal measurement that saturates the Cramer–Rao bound, i.e., the measurement with Fisher information equal to QFI, for considered states are determined in the whole space and the subspaces, separately.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)
Tavis, M., Cummings, F.W.: Exact solution for an \(N\)-molecule—radiation-field Hamiltonian. Phys. Rev. 170, 379 (1968)
Tavis, M., Cummings, F.W.: Approximate solutions for an \(N\)-molecule-radiation-field Hamiltonian. Phys. Rev. 188, 692 (1969)
Bogoliubov, N.M., Bullough, R.K., Timonen, J.: Exact solution of generalized Tavis–Cummings models in quantum optics. J. Phys. A Math. Gen. 29, 6305 (1996)
Dukelsky, J., Dussel, G.G., Esebbag, C., Pittel, S.: Exactly solvable models for atom–molecule Hamiltonians. Phys. Rev. Lett. 93, 050403 (2004)
He, M.-M., Chen, G., Liang, J.-Q.: Berry phase in Tavis–Cummings model. Eur. Phys. J. D 44, 581 (2007)
Hassan, S.S., SebaweAbdalla, M., Obada, A.-S.F., Batarfi, H.A.: Periodic squeezing in the Tavis–Cummings model. J. Mod. Opt. 40, 1351 (1993)
Tessier, T.E., Deutsch, I.H., Delgado, A., Fuentes-Guridi, I.: Entanglement sharing in the two-atom Tavis–Cummings model. Phys. Rev. A 68, 062316 (2003)
Knap, M., Arrigoni, E., von der Linden, W.: Quantum phase transition and excitations of the Tavis–Cummings lattice model. Phys. Rev. B 82, 045126 (2010)
Zou, J.H., Liu, T., Feng, M., Yang, W.L., Chen, C.Y., Twamley, J.: Quantum phase transition in a driven Tavis–Cummings model. New J. Phys. 15, 123032 (2013)
Leek, P.J., Filipp, S., Maurer, P., Baur, M., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Wallraff, A.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511(R) (2009)
Youssef, M., Metwally, N., Obada., A.-S.F.: Some entanglement features of a three-atom Tavis–Cummings model: a cooperative case. J. Phys. B At. Mol. Opt. Phys. 43, 095501 (2010)
Cai, J.-F., Liu, H.-P., and: Entanglement in three-atom Tavis–Cummings model induced by a thermal field. Commun. Theor. Phys. 43, 427 (2005)
Hou, X.-W., Wan, M.-F., Ma, Z.-Q.: Tripartite entanglement dynamics for mixed states in the Tavis–Cummings model with intrinsic decoherence. Eur. Phys. J. D 66, 152 (2012)
Ma, J.-M., Jiao, Z.-Y., Li, N.: Quantum entanglement in two-photon Tavis–Cummings model with a Kerr nonlinearity. Int. J. Theor. Phys. 46, 2550 (2007)
López, C.E., Lastra, F., Romero, G., Retamal, J.C.: Entanglement properties in the inhomogeneous Tavis–Cummings model. Phys. Rev. A 75, 022107 (2007)
Chuan-Jia, S., Yun-Jie, X.: The entanglement character of two entangled atoms in Tavis–Cummings model. Acta Phys. Sin. 55, 01585 (2006)
Jarvis, C.E.A., Rodrigues, D.A., Györffy, B.L., Spiller, T.P., Short, A.J., Annett, J.F.: Dynamics of entanglement and ‘attractor’ states in the Tavis–Cummings model. New J. Phys. 11, 103047 (2009)
Zhang, Y.Q., Xu, J.B.: Dynamics of quantum discord in two Tavis–Cummings models with classical driving fields. Eur. Phys. J. D 64, 549 (2011)
He, Q.-L., Jing-Bo, X.: Enhancement of stationary state quantum discord in Tavis–Cummings model by nonlinear Kerr-like medium. Opt. Commun. 284, 3649 (2011)
Cramer, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)
Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)
Holevo, A.S.: Statistical Structure of Quantum Theory. Lecture Notes in Physics 61. Springer, Berlin (2001)
Braunstein, S., Caves, C.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)
Braunstein, S., Caves, C., Milburn, G.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247, 135 (1996)
Paris, M.G.A.: Quantum estimation for quantum technology. Int. J. Quantum Inf. 7, 125 (2009)
Ragy, S., Jarzyna, M., Demkowicz-Dobrzanski, R.: Compatibility in multiparameter quantum metrology. Phys. Rev. A 94, 052108 (2016)
Virzì, S., et al.: Optimal estimation of parameters of an entangled quantum state. J. Phys. Conf. Ser. 841, 012033 (2017)
Sun, Z., Ma, J., Xiao-Ming, L., Wang, X.: Fisher information in a quantum-critical environment. Phys. Rev. A 82, 022306 (2010)
Wang, T.-L., Ling-Na, W., Yang, W., Jin, G.-R., Lambert, N., Nori, F.: Quantum Fisher information as a signature of the superradiant quantum phase transition. New J. Phys. 16, 063039 (2014)
Armata, F., Latmiral, L., Plato, A.D.K., Kim, M.S.: Quantum limits to gravity estimation with optomechanics. Phys. Rev. A 96, 043824 (2017)
Fujiwara, A.: Quantum channel identification problem. Phys. Rev. A 63, 042304 (2001)
Fujiwara, A., Imai, H.: Quantum parameter estimation of a generalized Pauli channel. J. Phys. A 36, 8093 (2003)
Ji, Z., Wang, G., Duan, R., Feng, Y., Ying, M.: Parameter estimation of quantum channels. IEEE Trans. Inf. Theory 54, 11 (2008)
Gill, R.D., Massar, S.: State estimation for large ensembles. Phys. Rev. A 61, 042312 (2000)
Invernizzi, C., Korbman, M., Venuti, L.C., Paris, M.G.A.: Optimal quantum estimation in spin systems at criticality. Phys. Rev. A 78, 042106 (2008)
Zanardi, P., Paris, M.G.A., Venuti, L.C.: Quantum criticality as a resource for quantum estimation. Phys. Rev. A 78, 042105 (2008)
Genoni, M.G., Invernizzi, C.: Optimal quantum estimation of the coupling constant of Jaynes–Cummings interaction. Eur. Phys. J. Spec. Top. 203, 49 (2012)
Salvatori, G., Mandarino, A., Paris, M.G.A.: Quantum metrology in Lipkin–Meshkov–Glick critical systems. Phys. Rev. A 90, 022111 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Faizi, E., Mahmoudi, P. Ultimate bound and optimal measurement for estimation of coupling constant in Tavis–Cummings model. Quantum Inf Process 17, 303 (2018). https://doi.org/10.1007/s11128-018-2074-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2074-8