Abstract
We propose an optical scheme to prepare large-scale maximally entangled W states by fusing arbitrary-size polarization entangled W states via polarization-dependent beam splitter. Because most of the currently existing fusion schemes are suffering from the qubit loss problem, that is the number of the output entangled qubits is smaller than the sum of numbers of the input entangled qubits, which will inevitably decrease the fusion efficiency and increase the number of fusion steps as well as the requirement of quantum memories, in our scheme, we design a effect fusion mechanism to generate \(W_{m+n}\) state from a n-qubit W state and a m-qubit W state without any qubit loss. As the nature of this fusion mechanism clearly increases the final size of the obtained W state, it is more efficient and feasible. In addition, our scheme can also generate \(W_{m+n+t-1}\) state by fusing a \(W_m\), a \(W_n\) and a \(W_t\) states. This is a great progress compared with the current scheme which has to lose at least two particles in the fusion of three W states. Moreover, it also can be generalized to the case of fusing k different W states, and all the fusion schemes proposed here can start from Bell state as well.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)
Özdemir, Ş.K., Bartkiewicz, K., Liu, Y.X., Miranowicz, A.: Teleportation of qubit states through dissipative channels: conditions for surpassing the no-cloning limit. Phys. Rev. A 76(4), 042325 (2007)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Dür, W.: Multipartite entanglement that is robust against disposal of particles. Phys. Rev. A 63, 020303(R) (2001)
Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131 (1990)
Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)
Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)
D’Hondt, E., Panangaden, P.: The computational power of the \(W\) and GHZ states. Quantum Inf. Comput. 6, 173 (2006)
Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54 (2004)
Kempe, J.: Multiparticle entanglement and its applications to cryptography. Phys. Rev. A 60, 910 (1999)
Joo, J., Lee, J., Jang, J., Park, Y.J.: Quantum secure communication with \(W\) states. arXiv:quant-ph/0204003 (2002)
Murao, M., Jonathan, D.M., Plenio, B., Vedral, V.: Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, \(\pi \) oscillations, and macroscopic quantum self-trapping. Phys. Rev. A 59, 156 (1999)
Shi, B.S., Tomita, A.: Teleportation of an unknown state by \(W\) states. Phys. Lett. A 296, 161 (2002)
Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a \(W\) state. New J. Phys. 5, 136 (2003)
Yeo, Y.: Quantum teleportation using three-particle entanglement. arXiv:quant-ph/0302030 (2003)
Bose, S., Vedral, V., Kninght, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)
Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)
D’Hondt, E., Panangaden, P.: The computational power of the \(W\) and GHZ states. Quantum Inf. Comput. 6, 173–183 (2006)
Ozaydin, F.: Phase damping destroys quantum Fisher information of \(W\) states. Phys. Lett. A 378, 3161–3164 (2014)
Ozaydin, F., Altintas, A., Yesilyurt, C., Bugu, S., Erol, V.: Quantum Fisher information of bipartitions of \(W\) states. Acta Phys. Pol. A 127(4), 1233–1235 (2015)
Dag, C.B., Mustecaplioglu, O.E.: Multiatom quantum coherences in micromasers as fuel for thermal and nonthermal machines. arXiv:1507.08136 (2016)
Tashima, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Elementary optical gate for expanding an entanglement web. Phys. Rev. A 77(3), 030302(R) (2008)
Tashima, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Local expansion of photonic \(W\) state using a polarization-dependent beamsplitter. New J. Phys. 11, 023024 (2009)
Zang, X.P., Yang, M., Wu, W.F., Fang, S.D., Cao, Z.L.: Local expansion of atomic \(W\) state in cavity quantum electrodynamics. Indian J. Phys. 88, 1141 (2014)
Zang, X.P., Yang, M., Ozaydin, F., Song, W., Cao, Z.L.: Deterministic generation of large scale atomic \(W\) states. Opt. Express 24, 12293 (2016)
Yesilyurt, C., Bugu, S., Ozaydin, F., Altintas, A., Tame, M., Yang, L., Özdemir, Ş.K.: Deterministic local expansion of \(W\) states. J. Opt. Soc. Am. B 33, 2313 (2016)
Tashima, T., Kitano, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Demonstration of local expansion toward large-scale entangled webs. Phys. Rev. lett. 105(21), 210503 (2010)
Özdemir, Ş.K., Matsunaga, E., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: An optical fusion gate for \(W\)-states. New J. Phys. 13, 103003 (2011)
Ozaydin, F., Bugu, S., Yesilyurt, C., Altintas, A.A., Tame, M., Özdemir, Ş.K.: Fusing multiple \(W\) states simultaneously with a Fredkin gate. Phys. Rev. A 89, 042311 (2014)
Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic \(W\) or Bell states. Quantum Inf. Process. 12, 2965 (2013)
Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the \(W\)-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87, 032331 (2013)
Zang, X.P., Yang, M., Ozaydin, F., Song, W., Cao, Z.L.: Generating multi-atom entangled \(W\) states via light-matter interface based fusion mechanism. Sci. Rep. 5, 16245 (2015)
Dikera, F., Ozaydinb, F., Arika, M.: Enhancing the \(W\) state fusion process with a to oli gate and a CNOT gate via one-way quantum computation and linear optics. Acta Phys. Pol. A 127(4), 1189–190 (2015)
Li, N., Yang, J., Ye, L.: Realizing an efficient fusion gate for \(W\) states with cross-Kerr nonlinearities and QD-cavity coupled system. Quantum Inf. Process. 14(6), 1933–1946 (2015)
Li, K., Kong, F.Z., Yang, M., Yang, Q., Cao, Z.L.: Qubit-loss-free fusion of \(W\) states. Phys. Rev. A 94(6), 062315 (2016)
Tashima, T., Wakatsuki, T., Ozdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local transformation of two Einstein–Podolsky–Rosen photon pairs into a three-photon \(W\) state. Phys. Rev. Lett. 102(13), 130502 (2009)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61274100.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, K., Chen, T., Mao, H. et al. Preparing large-scale maximally entangled W states in optical system. Quantum Inf Process 17, 307 (2018). https://doi.org/10.1007/s11128-018-2076-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2076-6