Abstract
Concatenated Greenberger–Horne–Zeilinger (C-GHZ) state is a kind of logic qubit which is robust in noisy environment. In this paper, we encode the C-GHZ state as the logic qubit and design two kinds of quantum gates for such logic qubit. The first kind is the single logic-qubit gate which contains the logic-qubit bit-flip gate and phase-flip gate. The second kind is the logic-qubit controlled-not (CNOT) gate. We exploit the single quantum gate for physical qubit, such as bit-flip gate and phase-flip gate, and two-qubit CNOT gate to realize the logic-qubit gate. We also calculated the success probability of such logic-qubit gate based on the imperfect physical quantum gate. This protocol may be useful for future quantum computation.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, pp. 175–179. Bangalore, India. IEEE: New York, USA (1984)
Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)
Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light. Sci. Appl. 5, e16144 (2016)
Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)
Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secret direct communication. Sci. Bull. 62, 1519 (2017)
Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)
Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 090312 (2018)
Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)
Makhlin, Y., Schöen, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)
Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., et al.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–52 (2008)
Jiang, L., Taylor, J.M., Søensen, A.S., Lukin, M.D.: Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007)
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017)
Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)
Bang, J., Lee, S.W., Jeong, H.: Protocol for secure quantum machine learning at a distant place. Quant. Inf. Process. 14, 3933–3947 (2015)
Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025 (2017)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)
Grover, L.K.: Quantum mechanics helps in serching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)
Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709–4712 (1997)
Long, G.L., Li, Y.S., Zhang, W.L.: Phase matching in quantum searching. Phys. Lett. A 262, 27–34 (1999)
Long, G.L., Li, X., Sun, Y.: Phase matching condition for quantum search with a generalized initial state. Phys. Lett. A 294, 243–152 (2002)
Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)
Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)
Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94 (1999)
Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)
Zhou, J., Liu, B.J., Hong, Z.P., Xue, Z.Y.: Fast holonomic quantum computation based on solid-state spins with all-optical control. Sci. China Phys. Mech. Astron. 61, 010312 (2018)
Xu, G.F.: Nonadiabatic holonomic quantum computation based on nitrogen-vacancy centers. Sci. China Phys. Mech. Astron. 61, 010331 (2018)
Shao, X.Q., Zheng, T.Y., Zhang, S.: Engineering steady three-atom singlet via quantum-jump-based feedback. Phys. Rev. A 85, 042308 (2012)
Shao, X.Q., Zheng, T.Y., Oh, C.H., Zhang, S.: Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission. Phys. Rev. A 89, 012319 (2014)
Shao, X.Q., You, J.B., Zheng, T.Y., Oh, C.H., Zhang, S.: Stationary three-dimensional entanglement via dissipative Rydberg pumping. Phys. Rev. A 89, 052313 (2014)
He, Y.Q., Ding, D., Yan, F.L., Gao, T.: Exploration of photon-number entangled states using weak nonlinearities. Opt. Express. 23, 21671–21677 (2015)
Ding, D., He, Y.Q., Yan, F.L., Gao, T.: On four-photon entanglement from parametric down-conversion process. Quant. Inf. Process. 17, 243 (2018)
Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)
Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1995)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)
Lai, C.Y., Zeng, Y.C., Brun, T.A.: Fault-tolerant preparation of stabilizer states for quantum Calderbank–Shor–Steane codes by classical error-correcting codes. Phys. Rev. Lett. 95, 032339 (2017)
Ralph, T.C., Hayes, A.J.F., Gilchrist, Alexei: Loss-tolerant optical qubits. Phys. Rev. Lett. 95, 100501 (2005)
Gilchrist, A., Hayes, A.J.F., Ralph, T.C.: Efficient parity-encoded optical quantum computing. Phys. Rev. A 75, 052328 (2007)
Borregaard, J.S., Søensen, A.S., Cirac, J.I., Lukin, M.D.: Efficient quantum computation in a network with probabilistic gates and logical encoding. Phys. Rev. A 95, 042312 (2017)
Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Meter, R.V., Lukin, M.D.: Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009)
Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, Kea: Quantum communication without the necessity of quantum memories. Nat. Photonics 6, 777 (2012)
Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014)
Ewert, F., Bergmann, M., van Loock, P.: Ultrafast long-distance quantum communication with static linear optics. Phys. Rev. Lett. 117, 210501 (2016)
Ewert, F., van Loock, P.: Ultrafast fault-tolerant long-distance quantum communication with static linear optics. Phys. Rev. A 95, 012327 (2017)
Li, L., Zou, C.L., Albert, V.V., Muralidharan, S., Girvin, S.M., Jiang, L.: Cat codes with optimal decoherence suppression for a lossy bosonic channel. Phys. Rev. Lett. 119, 030502 (2017)
Fröewis, F., Düer, W.: Stable macroscopic quantum superpositions. Phys. Rev. Lett. 106, 110402 (2011)
Fröwis, F., Düer, W.: Stability of encoded macroscopic quantum superpositions. Phys. Rev. A 85, 052329 (2012)
Kesting, F., Fröewis, F., Düer, W.: Effective noise channels for encoded quantum systems. Phys. Rev. A 88, 042305 (2013)
Lu, H., Chen, L.K., Liu, C., Xu, P., Yao, X.C., Li, L., Liu, N.L., Zhao, B., Chen, Y.A., Pan, J.W.: Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions. Nat. Photonics 8, 364–368 (2014)
Ding, D., Yan, F.L., Gao, T.: Preparation of km-photon concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales. J. Opt. Soc. Am. B 30, 3075–3078 (2013)
Guo, R., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B.: Generation of concatenated Greenberger–Horne–Zeilinger-type entangled coherent state based on linear optics. Quant. Inf. Process. 16, 68 (2017)
Chen, S.S., Zhou, L., Sheng, Y.B.: Generation of an arbitrary concatenated Greenberger–Horne–Zeilinger state with single photons. Laser Phys. Lett. 14, 025203 (2017)
Zhou, L., Sheng, Y.B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)
Zhou, L., Sheng, Y.B.: Polarization entanglement purification for concatenated Greenberger–Horne–Zeilinger state. Ann. Phys. 385, 10 (2017)
Qu, C.C., Zhou, L., Sheng, Y.B.: Entanglement concentration for concatenated Greenberger–Horne–Zeilinger state. Quant. Inf. Process. 14, 4131 (2015)
Pan, J., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B., Wang, Q.: Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity. Quant. Inf. Process. 15, 1669 (2016)
Wu, X.D., Zhou, L., Zhong, W., Sheng, Y.B.: Purification of the concatenated Greenberger–Horne–Zeilinger state with linear optics. Quant. Inf. Process. 17, 255 (2018)
Sheng, Y.B., Zhou, L.: Entanglement analysis for macroscopic Schrodinger’s Cat state. EPL 109, 40009 (2015)
Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92, 042314 (2015)
Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)
Zhou, L., Sheng, Y.B.: Feasible logic Bell-state analysis with linear optics. Sci. Rep. 6, 20901 (2016)
Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled not gate. Phys. Rev. Lett. 93, 250502 (2004)
Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China Phys. Mech. Astron. 58, 060301 (2015)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant Nos. 11474168 and 11747161.
Author information
Authors and Affiliations
Corresponding author
Appendix A: Simplification of the EL qubits \(|\bar{0}\rangle _{m,N}\) and \(|\bar{1}\rangle _{m,N}\)
Appendix A: Simplification of the EL qubits \(|\bar{0}\rangle _{m,N}\) and \(|\bar{1}\rangle _{m,N}\)
The state in Eq. (2) can be simplified to the state in Eq. (3). The simplification process is shown as follows
The constant \(({\sqrt{2}})^{N + 1}\) can be represented by the letter \(\bar{C}\).
Here, \({\left| 0 \right\rangle }^{ \otimes m}\) and \({\left| 1 \right\rangle }^{ \otimes m}\) are block qubits which will be represented as letter A and letter B. Each block qubit contains m physical qubits. The subscripts 1, 2, \(\ldots \) , N indicate the serial number of the block qubit. In order to simplify the calculation, \({\left| 0 \right\rangle }^{ \otimes m}\) and \({\left| 1 \right\rangle }^{ \otimes m}\) shown in \({\left( {{{\left| 0 \right\rangle }^{ \otimes m}} + {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _1}\) or \({\left( {{{\left| 0 \right\rangle }^{ \otimes m}} - {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _1}\) can be marked as \({A_1}\) and \({B_1}\). Thus, Eq. (28) can be written as
Here, the subscripts \(2'\) indicates that the expression within parentheses comes from the first two items. Next, we define the \({A_1}{{\left| 0 \right\rangle }^{ \otimes m}} + {B_1}{{\left| 1 \right\rangle }^{ \otimes m}}\) as \(A_{2}\) and the \({A_1}{{\left| 1 \right\rangle }^{ \otimes m}} + {B_1}{{\left| 0 \right\rangle }^{ \otimes m}}\) as \(B_{2}\). Since \(A_1\) does not contain the block qubit B, \({A_1}{{\left| 0 \right\rangle }^{ \otimes m}}\) also does not contain the item B. Similarly, the \({B_1}{{\left| 1 \right\rangle }^{ \otimes m}}\) contains two such block qubits. Therefore, the \(A_2\) contains an even number of block qubit B. \(B_2\) contains an odd number of B. In this way, the equation can be rewritten as
By using a similar iterative approach, Eq. (28) eventually becomes:
Here, \(A_{N - 1}\) contains an even number of block qubits B and \(B_{N - 1}\) contains an odd number of block qubits B. These two algebraic expressions can be expressed in the following
Finally, after simplifying the EL qubits \(|\bar{0}\rangle _{m,N}\) and \(|\bar{1}\rangle _{m,N}\), Eq. (31) can be written as:
For example, \(|\bar{0}\rangle _{m,N}\) with \(m=2,N=3\) can be written as
Here \(A_{2}=( \left| 00\right\rangle \left| 00\right\rangle + \left| 11\right\rangle \left| 11\right\rangle )\) and \(B_{2}=( \left| 00\right\rangle \left| 11\right\rangle + \left| 11\right\rangle \left| 00\right\rangle )\).
Rights and permissions
About this article
Cite this article
Ding, SP., Zhou, L., Zhong, W. et al. Construction of quantum gates for concatenated Greenberger–Horne–Zeilinger-type logic qubit. Quantum Inf Process 17, 306 (2018). https://doi.org/10.1007/s11128-018-2077-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2077-5