Skip to main content
Log in

Construction of quantum gates for concatenated Greenberger–Horne–Zeilinger-type logic qubit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Concatenated Greenberger–Horne–Zeilinger (C-GHZ) state is a kind of logic qubit which is robust in noisy environment. In this paper, we encode the C-GHZ state as the logic qubit and design two kinds of quantum gates for such logic qubit. The first kind is the single logic-qubit gate which contains the logic-qubit bit-flip gate and phase-flip gate. The second kind is the logic-qubit controlled-not (CNOT) gate. We exploit the single quantum gate for physical qubit, such as bit-flip gate and phase-flip gate, and two-qubit CNOT gate to realize the logic-qubit gate. We also calculated the success probability of such logic-qubit gate based on the imperfect physical quantum gate. This protocol may be useful for future quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, pp. 175–179. Bangalore, India. IEEE: New York, USA (1984)

  4. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  7. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  8. Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light. Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  9. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  10. Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secret direct communication. Sci. Bull. 62, 1519 (2017)

    Article  Google Scholar 

  11. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)

    Article  ADS  Google Scholar 

  12. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 090312 (2018)

    Article  Google Scholar 

  13. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  14. Makhlin, Y., Schöen, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)

    Article  ADS  Google Scholar 

  15. Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., et al.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–52 (2008)

    Article  ADS  Google Scholar 

  16. Jiang, L., Taylor, J.M., Søensen, A.S., Lukin, M.D.: Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007)

    Article  ADS  Google Scholar 

  17. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017)

    Article  ADS  Google Scholar 

  18. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Article  ADS  Google Scholar 

  19. Bang, J., Lee, S.W., Jeong, H.: Protocol for secure quantum machine learning at a distant place. Quant. Inf. Process. 14, 3933–3947 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025 (2017)

    Article  Google Scholar 

  21. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  22. Grover, L.K.: Quantum mechanics helps in serching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  23. Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709–4712 (1997)

    Article  ADS  Google Scholar 

  24. Long, G.L., Li, Y.S., Zhang, W.L.: Phase matching in quantum searching. Phys. Lett. A 262, 27–34 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  25. Long, G.L., Li, X., Sun, Y.: Phase matching condition for quantum search with a generalized initial state. Phys. Lett. A 294, 243–152 (2002)

    Article  MathSciNet  Google Scholar 

  26. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  27. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  Google Scholar 

  28. Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  29. Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    Article  ADS  Google Scholar 

  30. Zhou, J., Liu, B.J., Hong, Z.P., Xue, Z.Y.: Fast holonomic quantum computation based on solid-state spins with all-optical control. Sci. China Phys. Mech. Astron. 61, 010312 (2018)

    Article  ADS  Google Scholar 

  31. Xu, G.F.: Nonadiabatic holonomic quantum computation based on nitrogen-vacancy centers. Sci. China Phys. Mech. Astron. 61, 010331 (2018)

    Article  ADS  Google Scholar 

  32. Shao, X.Q., Zheng, T.Y., Zhang, S.: Engineering steady three-atom singlet via quantum-jump-based feedback. Phys. Rev. A 85, 042308 (2012)

    Article  ADS  Google Scholar 

  33. Shao, X.Q., Zheng, T.Y., Oh, C.H., Zhang, S.: Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission. Phys. Rev. A 89, 012319 (2014)

    Article  ADS  Google Scholar 

  34. Shao, X.Q., You, J.B., Zheng, T.Y., Oh, C.H., Zhang, S.: Stationary three-dimensional entanglement via dissipative Rydberg pumping. Phys. Rev. A 89, 052313 (2014)

    Article  ADS  Google Scholar 

  35. He, Y.Q., Ding, D., Yan, F.L., Gao, T.: Exploration of photon-number entangled states using weak nonlinearities. Opt. Express. 23, 21671–21677 (2015)

    Article  ADS  Google Scholar 

  36. Ding, D., He, Y.Q., Yan, F.L., Gao, T.: On four-photon entanglement from parametric down-conversion process. Quant. Inf. Process. 17, 243 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  37. Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  38. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  39. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1995)

    Article  ADS  Google Scholar 

  40. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  41. Lai, C.Y., Zeng, Y.C., Brun, T.A.: Fault-tolerant preparation of stabilizer states for quantum Calderbank–Shor–Steane codes by classical error-correcting codes. Phys. Rev. Lett. 95, 032339 (2017)

    Google Scholar 

  42. Ralph, T.C., Hayes, A.J.F., Gilchrist, Alexei: Loss-tolerant optical qubits. Phys. Rev. Lett. 95, 100501 (2005)

    Article  ADS  Google Scholar 

  43. Gilchrist, A., Hayes, A.J.F., Ralph, T.C.: Efficient parity-encoded optical quantum computing. Phys. Rev. A 75, 052328 (2007)

    Article  ADS  Google Scholar 

  44. Borregaard, J.S., Søensen, A.S., Cirac, J.I., Lukin, M.D.: Efficient quantum computation in a network with probabilistic gates and logical encoding. Phys. Rev. A 95, 042312 (2017)

    Article  ADS  Google Scholar 

  45. Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Meter, R.V., Lukin, M.D.: Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009)

    Article  ADS  Google Scholar 

  46. Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, Kea: Quantum communication without the necessity of quantum memories. Nat. Photonics 6, 777 (2012)

    Article  ADS  Google Scholar 

  47. Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014)

    Article  ADS  Google Scholar 

  48. Ewert, F., Bergmann, M., van Loock, P.: Ultrafast long-distance quantum communication with static linear optics. Phys. Rev. Lett. 117, 210501 (2016)

    Article  ADS  Google Scholar 

  49. Ewert, F., van Loock, P.: Ultrafast fault-tolerant long-distance quantum communication with static linear optics. Phys. Rev. A 95, 012327 (2017)

    Article  ADS  Google Scholar 

  50. Li, L., Zou, C.L., Albert, V.V., Muralidharan, S., Girvin, S.M., Jiang, L.: Cat codes with optimal decoherence suppression for a lossy bosonic channel. Phys. Rev. Lett. 119, 030502 (2017)

    Article  ADS  Google Scholar 

  51. Fröewis, F., Düer, W.: Stable macroscopic quantum superpositions. Phys. Rev. Lett. 106, 110402 (2011)

    Article  ADS  Google Scholar 

  52. Fröwis, F., Düer, W.: Stability of encoded macroscopic quantum superpositions. Phys. Rev. A 85, 052329 (2012)

    Article  ADS  Google Scholar 

  53. Kesting, F., Fröewis, F., Düer, W.: Effective noise channels for encoded quantum systems. Phys. Rev. A 88, 042305 (2013)

    Article  ADS  Google Scholar 

  54. Lu, H., Chen, L.K., Liu, C., Xu, P., Yao, X.C., Li, L., Liu, N.L., Zhao, B., Chen, Y.A., Pan, J.W.: Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions. Nat. Photonics 8, 364–368 (2014)

    Article  ADS  Google Scholar 

  55. Ding, D., Yan, F.L., Gao, T.: Preparation of km-photon concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales. J. Opt. Soc. Am. B 30, 3075–3078 (2013)

    Article  ADS  Google Scholar 

  56. Guo, R., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B.: Generation of concatenated Greenberger–Horne–Zeilinger-type entangled coherent state based on linear optics. Quant. Inf. Process. 16, 68 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  57. Chen, S.S., Zhou, L., Sheng, Y.B.: Generation of an arbitrary concatenated Greenberger–Horne–Zeilinger state with single photons. Laser Phys. Lett. 14, 025203 (2017)

    Article  ADS  Google Scholar 

  58. Zhou, L., Sheng, Y.B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)

    Article  ADS  Google Scholar 

  59. Zhou, L., Sheng, Y.B.: Polarization entanglement purification for concatenated Greenberger–Horne–Zeilinger state. Ann. Phys. 385, 10 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  60. Qu, C.C., Zhou, L., Sheng, Y.B.: Entanglement concentration for concatenated Greenberger–Horne–Zeilinger state. Quant. Inf. Process. 14, 4131 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  61. Pan, J., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B., Wang, Q.: Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity. Quant. Inf. Process. 15, 1669 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  62. Wu, X.D., Zhou, L., Zhong, W., Sheng, Y.B.: Purification of the concatenated Greenberger–Horne–Zeilinger state with linear optics. Quant. Inf. Process. 17, 255 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  63. Sheng, Y.B., Zhou, L.: Entanglement analysis for macroscopic Schrodinger’s Cat state. EPL 109, 40009 (2015)

    Article  ADS  Google Scholar 

  64. Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92, 042314 (2015)

    Article  ADS  Google Scholar 

  65. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)

    Article  ADS  Google Scholar 

  66. Zhou, L., Sheng, Y.B.: Feasible logic Bell-state analysis with linear optics. Sci. Rep. 6, 20901 (2016)

    Article  ADS  Google Scholar 

  67. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled not gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  68. Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China Phys. Mech. Astron. 58, 060301 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11474168 and 11747161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Appendix A: Simplification of the EL qubits \(|\bar{0}\rangle _{m,N}\) and \(|\bar{1}\rangle _{m,N}\)

Appendix A: Simplification of the EL qubits \(|\bar{0}\rangle _{m,N}\) and \(|\bar{1}\rangle _{m,N}\)

The state in Eq. (2) can be simplified to the state in Eq. (3). The simplification process is shown as follows

$$\begin{aligned} |\bar{0}\rangle _{m,N}= & {} \frac{1}{\sqrt{2}}\left( \left| \hbox {GHZ}_{m}^{+}\right\rangle ^{\otimes N}+\left| \hbox {GHZ}_{m}^{-}\right\rangle ^{\otimes N}\right) \nonumber \\= & {} \frac{1}{\sqrt{2}}\left( \left( \frac{1}{\sqrt{2}}\right) ^{N}\left( |0\rangle ^{\otimes m}+|1\rangle ^{\otimes m}\right) ^{\otimes N}+\left( \frac{1}{\sqrt{2}}\right) ^{N}\left( |0\rangle ^{\otimes m}-|1\rangle ^{\otimes m}\right) ^{\otimes N} \right) \nonumber \\= & {} \left( \frac{1}{\sqrt{2}}\right) ^{N+1}\left( \left( |0\rangle ^{\otimes m}+|1\rangle ^{\otimes m}\right) ^{\otimes N}+\left( |0\rangle ^{\otimes m}-|1\rangle ^{\otimes m}\right) ^{\otimes N}\right) . \end{aligned}$$
(27)

The constant \(({\sqrt{2}})^{N + 1}\) can be represented by the letter \(\bar{C}\).

$$\begin{aligned} \bar{C}|\bar{0}\rangle _{m,N}= & {} {\left( {{{\left| 0 \right\rangle }^{ \otimes m}} + {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _1}{\left( {{{\left| 0 \right\rangle }^{ \otimes m}} + {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _2} \cdots {\left( {{{\left| 0 \right\rangle }^{ \otimes m}} + {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _N} \nonumber \\&+\, {\left( {{{\left| 0 \right\rangle }^{ \otimes m}} - {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _1}{\left( {{{\left| 0 \right\rangle }^{ \otimes m}} - {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _2} \cdots {\left( {{{\left| 0 \right\rangle }^{ \otimes m}} - {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _N}. \end{aligned}$$
(28)

Here, \({\left| 0 \right\rangle }^{ \otimes m}\) and \({\left| 1 \right\rangle }^{ \otimes m}\) are block qubits which will be represented as letter A and letter B. Each block qubit contains m physical qubits. The subscripts 1, 2, \(\ldots \) , N indicate the serial number of the block qubit. In order to simplify the calculation, \({\left| 0 \right\rangle }^{ \otimes m}\) and \({\left| 1 \right\rangle }^{ \otimes m}\) shown in \({\left( {{{\left| 0 \right\rangle }^{ \otimes m}} + {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _1}\) or \({\left( {{{\left| 0 \right\rangle }^{ \otimes m}} - {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _1}\) can be marked as \({A_1}\) and \({B_1}\). Thus, Eq. (28) can be written as

$$\begin{aligned} \bar{C}|\bar{0}\rangle _{m,N}= & {} {\left( {{A_1} + {B_1}} \right) }{\left( {{{\left| 0 \right\rangle }^{ \otimes m}} + {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _2} \cdots {\left( {{{\left| 0 \right\rangle }^{ \otimes m}}+ {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _N}\nonumber \\&+\, {\left( {{A_1} - {B_1}} \right) }{\left( {{{\left| 0 \right\rangle }^{ \otimes m}} - {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _2} \cdots {\left( {{{\left| 0 \right\rangle }^{ \otimes m}} - {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _N}\nonumber \\= & {} {\left( {{A_1}{{\left| 0 \right\rangle }^{ \otimes m}} + {B_1}{{\left| 1 \right\rangle }^{ \otimes m}} + {A_1}{{\left| 1 \right\rangle }^{ \otimes m}} + {B_1}{{\left| 0 \right\rangle }^{ \otimes m}}} \right) _{2'}}\nonumber \\&\cdots {\left( {{{\left| 0 \right\rangle }^{ \otimes m}} + {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _N}\nonumber \\&+\, {\left( {{A_1}{{\left| 0 \right\rangle }^{ \otimes m}} + {B_1}{{\left| 1 \right\rangle }^{ \otimes m}} - {A_1}{{\left| 1 \right\rangle }^{ \otimes m}} - {B_1}{{\left| 0 \right\rangle }^{ \otimes m}}} \right) _{2'}}\nonumber \\&\cdots {\left( {{{\left| 0 \right\rangle }^{ \otimes m}} - {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _N}. \end{aligned}$$
(29)

Here, the subscripts \(2'\) indicates that the expression within parentheses comes from the first two items. Next, we define the \({A_1}{{\left| 0 \right\rangle }^{ \otimes m}} + {B_1}{{\left| 1 \right\rangle }^{ \otimes m}}\) as \(A_{2}\) and the \({A_1}{{\left| 1 \right\rangle }^{ \otimes m}} + {B_1}{{\left| 0 \right\rangle }^{ \otimes m}}\) as \(B_{2}\). Since \(A_1\) does not contain the block qubit B, \({A_1}{{\left| 0 \right\rangle }^{ \otimes m}}\) also does not contain the item B. Similarly, the \({B_1}{{\left| 1 \right\rangle }^{ \otimes m}}\) contains two such block qubits. Therefore, the \(A_2\) contains an even number of block qubit B. \(B_2\) contains an odd number of B. In this way, the equation can be rewritten as

$$\begin{aligned} \bar{C}|\bar{0}\rangle _{m,N}= & {} \left( {{A_2} + {B_2}} \right) \cdots {\left( {{{\left| 0 \right\rangle }^{ \otimes m}} + {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _N}\nonumber \\&+\, \left( {{A_2} - {B_2}} \right) \cdots {\left( {{{\left| 0 \right\rangle }^{ \otimes m}} - {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _N}. \end{aligned}$$
(30)

By using a similar iterative approach, Eq. (28) eventually becomes:

$$\begin{aligned} \bar{C}|\bar{0}\rangle _{m,N}= & {} \left( {{A_{N - 1}} + {B_{N - 1}}} \right) {\left( {{{\left| 0 \right\rangle }^{ \otimes m}} + {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _N}\nonumber \\&+\, \left( {{A_{N - 1}} - {B_{N - 1}}} \right) {\left( {{{\left| 0 \right\rangle }^{ \otimes m}} - {{\left| 1 \right\rangle }^{ \otimes m}}} \right) _N}\nonumber \\= & {} 2{A_{N - 1}}\left| 0 \right\rangle _N^{ \otimes m} + 2{B_{N - 1}}\left| 1 \right\rangle _N^{ \otimes m}. \end{aligned}$$
(31)

Here, \(A_{N - 1}\) contains an even number of block qubits B and \(B_{N - 1}\) contains an odd number of block qubits B. These two algebraic expressions can be expressed in the following

$$\begin{aligned} {A_{N - 1}}= & {} \sum \limits _{{x_i} \in {X_0}} {\prod \limits _{i = 1}^{N - 1} {{{\left| {{x_i}} \right\rangle }^{ \otimes m}}} } ,{X_\mathrm{{0}}}\mathrm{{ = }}\left\{ {{x_i} \in \{ 0,1\} \left| {\sum \limits _{i = 1}^{N - 1} {{x_i} = \mathrm{{0}}( {\bmod 2} )} } \right. } \right\} \nonumber \\ {B_{N - 1}}= & {} \sum \limits _{{x_i} \in {X_1}} {\prod \limits _{i = 1}^{N - 1} {{{\left| {{x_i}} \right\rangle }^{ \otimes m}}} } ,{X_1}\mathrm{{ = }}\left\{ {{x_i} \in \{ 0,1\} \left| {\sum \limits _{i = 1}^{N - 1} {{x_i} = 1( {\bmod 1} )} } \right. } \right\} . \end{aligned}$$
(32)

Finally, after simplifying the EL qubits \(|\bar{0}\rangle _{m,N}\) and \(|\bar{1}\rangle _{m,N}\), Eq. (31) can be written as:

$$\begin{aligned} |\bar{0}\rangle _{m,N}= & {} {\left( {\frac{1}{{\sqrt{2} }}}\right) ^{N - 1}}\left( {{A_{N-1}}{{\left| 0 \right\rangle }^{ \otimes m}} + {B_{N-1}}{{\left| 1 \right\rangle }^{ \otimes m}}} \right) ,\nonumber \\ |\bar{1}\rangle _{m,N}= & {} {\left( {\frac{1}{{\sqrt{2} }}}\right) ^{N - 1}}\left( {{B_{N-1}}{{\left| 0 \right\rangle }^{ \otimes m}} + {A_{N-1}}{{\left| 1 \right\rangle }^{ \otimes m}}} \right) . \end{aligned}$$
(33)

For example, \(|\bar{0}\rangle _{m,N}\) with \(m=2,N=3\) can be written as

$$\begin{aligned} |\bar{0}{\rangle _{2,3}}= & {} {\left( {\frac{{\text {1}}}{{\sqrt{\text {2}} }}} \right) ^{\text {2}}}\left( {{{\left( {{{\left| {\text {0}} \right\rangle }^{ \otimes {\text {2}}}}{\text { + }}{{\left| {\text {1}} \right\rangle }^{ \otimes {\text {2}}}}} \right) }^{ \otimes {\text {3}}}}{\text { + }}{{\left( {{{\left| {\text {0}} \right\rangle }^{ \otimes {\text {2}}}} - {{\left| {\text {1}} \right\rangle }^{ \otimes {\text {2}}}}} \right) }^{ \otimes {\text {3}}}}} \right) \nonumber \\= & {} {\left( {\frac{{\text {1}}}{{\sqrt{\text {2}} }}} \right) ^{\text {2}}}\left( \left( {\left| {{\text {00}}} \right\rangle {\text { + }}\left| {{\text {11}}} \right\rangle } \right) \left( {\left| {{\text {00}}} \right\rangle {\text { + }}\left| {{\text {11}}} \right\rangle } \right) \left( {\left| {{\text {00}}} \right\rangle {\text { + }}\left| {{\text {11}}} \right\rangle } \right) \right. \nonumber \\&\left. +\, \left( {\left| {{\text {00}}} \right\rangle - \left| {{\text {11}}} \right\rangle } \right) \left( {\left| {{\text {00}}} \right\rangle - \left| {{\text {11}}} \right\rangle } \right) \left( {\left| {{\text {00}}} \right\rangle - \left| {{\text {11}}} \right\rangle } \right) \right) \nonumber \\= & {} {\frac{{\text {1}}}{2}} \left( \left| {{\text {000000}}} \right\rangle +\left| {{\text {001111}}} \right\rangle +\left| {{\text {110011}}}\right\rangle +\left| {{\text {111100}}} \right\rangle \right) \nonumber \\= & {} {\frac{{\text {1}}}{2}}\left( \left( \left| 0000\right\rangle + \left| 1111\right\rangle \right) \left| 0\right\rangle ^{\otimes {2}}+ \left( \left| 0011\right\rangle + \left| 1100\right\rangle \right) \left| 1\right\rangle ^{\otimes {2}} \right) . \end{aligned}$$
(34)

Here \(A_{2}=( \left| 00\right\rangle \left| 00\right\rangle + \left| 11\right\rangle \left| 11\right\rangle )\) and \(B_{2}=( \left| 00\right\rangle \left| 11\right\rangle + \left| 11\right\rangle \left| 00\right\rangle )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, SP., Zhou, L., Zhong, W. et al. Construction of quantum gates for concatenated Greenberger–Horne–Zeilinger-type logic qubit. Quantum Inf Process 17, 306 (2018). https://doi.org/10.1007/s11128-018-2077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2077-5

Keywords

Navigation