Skip to main content
Log in

Restricted (kn)-threshold quantum secret sharing scheme based on local distinguishability of orthogonal multiqudit entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we study a restricted (kn)-threshold access structure. According to this structure, we construct a group of orthogonal multipartite entangled states in d-dimensional system and investigate the distinguishability of these entangled states under restricted local operations and classical communication. Based on these properties, we propose a restricted (kn)-threshold quantum secret sharing scheme (called LOCC-QSS scheme). The k cooperating players in the restricted threshold scheme come from all disjoint groups. In the proposed protocol, the participants distinguish these orthogonal states by the computational basis measurement and classical communication to reconstruct the original secret. Furthermore, we also analyze the security of our scheme in three primary quantum attacks and give a simple encoding method in order to better prevent the participant conspiracy attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennet, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the International Conference on Computers, Systems and Signal Processing (1984)

  2. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  3. Amiri, R., Arrazola, J.M.: Quantum money with nearly optimal error tolerance. Phys. Rev. A 95, 062334 (2017)

    Article  ADS  Google Scholar 

  4. Gao, F.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quant. 21, 6600111 (2015)

    ADS  Google Scholar 

  5. Wei, C.Y., et al.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  6. Wei, C.Y., Cai, X.Q., Liu, B.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)

    Article  MathSciNet  Google Scholar 

  7. Shi, R.H., et al.: Quantum oblivious set-member decision protocol. Phys. Rev. A 92, 022309 (2015)

    Article  ADS  Google Scholar 

  8. Shi, R., Mu, Y., Zhong, H., et al.: Quantum private set intersection cardinality and its application to anonymous authentication. Inf. Sci. 370, 147–158 (2016)

    Article  Google Scholar 

  9. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612 (1979)

    Article  MathSciNet  Google Scholar 

  10. Blakley, G.R.: In: Proceedings of the National Computer Conference (AFIPS, 1979), pp. 313–317 (1979)

  11. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  13. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A Math. Gen. 39, 14089–14099 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zukowski, M., Zeilinger, A., Horne, M.A., et al.: Quest for GHZ states. Acta Phys. Pol. A 93, 187 (1998)

    Article  Google Scholar 

  16. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  17. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  18. Hsu, L.Y., Li, C.M.: Quantum secret sharing using product states. Phys. Rev. A 71, 022321 (2005)

    Article  ADS  Google Scholar 

  19. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  20. Wei, K.J., Ma, H.Q., Yang, J.H.: Experimental circular quantum secret sharing over telecom fiber network. Opt. Express 21(14), 16663–16669 (2013)

    Article  ADS  Google Scholar 

  21. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  22. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  23. Gordon, G., Rigolin, G.: Generalized quantum-state sharing. Phys. Rev. A 73, 062316 (2006)

    Article  ADS  Google Scholar 

  24. Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: A generalized information theoretical model for quantum secret sharing. Int. J. Theor. Phys. 55, 4972–4986 (2016)

    Article  Google Scholar 

  25. Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92, 030301(R) (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Gheorghiu, V., Sanders, B.C.: Accessing quantum secrets via local operations and classical communication. Phys. Rev. A 88(2), 022340 (2013)

    Article  ADS  Google Scholar 

  27. Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single \(d\)-level quantum system. Phys. Rev. A 92, 030302(R) (2015)

    Article  ADS  Google Scholar 

  28. Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92, 022305 (2015)

    Article  ADS  Google Scholar 

  29. Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)

    Article  ADS  Google Scholar 

  30. Yang, Y.H., Gao, F., Wu, X.: Quantum secret sharing via local operations and classical communication. Sci. Rep. 5, 16967–16967 (2015)

    Article  ADS  Google Scholar 

  31. Bai, C.M., Li, Z.H., Xu, T.T.: Quantum secret sharing using the \(d\)-dimensional GHZ state. Quantum Inf. Process. 16, 59 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95(2), 022320 (2017)

    Article  ADS  Google Scholar 

  33. Bai, C.M., Li, Z.H., Liu, C.J.: Quantum secret sharing using orthogonal multiqudit entangled states. Quantum Inf. Process. 16, 304 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Song, T.T.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18(4), 1333 (2009)

    Article  ADS  Google Scholar 

  35. Guo, F.-Z.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56(3), 445–448 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We want to express our gratitude to anonymous referees for their valuable and constructive comments. This work was sponsored by the National Natural Science Foundation of China under Grant Nos. 61373150 and 61602291, and Industrial Research and Development Project of Science and Technology of Shaanxi Province under Grant No. 2013k0611.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, CM., Li, ZH., Wang, JT. et al. Restricted (kn)-threshold quantum secret sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Quantum Inf Process 17, 312 (2018). https://doi.org/10.1007/s11128-018-2080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2080-x

Keywords

Navigation